13 resultados para parallel algorithm
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The simulated annealing optimization technique has been successfully applied to a number of electrical engineering problems, including transmission system expansion planning. The method is general in the sense that it does not assume any particular property of the problem being solved, such as linearity or convexity. Moreover, it has the ability to provide solutions arbitrarily close to an optimum (i.e. it is asymptotically convergent) as the cooling process slows down. The drawback of the approach is the computational burden: finding optimal solutions may be extremely expensive in some cases. This paper presents a Parallel Simulated Annealing, PSA, algorithm for solving the long term transmission network expansion planning problem. A strategy that does not affect the basic convergence properties of the Sequential Simulated Annealing algorithm have been implementeded and tested. The paper investigates the conditions under which the parallel algorithm is most efficient. The parallel implementations have been tested on three example networks: a small 6-bus network, and two complex real-life networks. Excellent results are reported in the test section of the paper: in addition to reductions in computing times, the Parallel Simulated Annealing algorithm proposed in the paper has shown significant improvements in solution quality for the largest of the test networks.
Resumo:
The increasing amount of sequences stored in genomic databases has become unfeasible to the sequential analysis. Then, the parallel computing brought its power to the Bioinformatics through parallel algorithms to align and analyze the sequences, providing improvements mainly in the running time of these algorithms. In many situations, the parallel strategy contributes to reducing the computational complexity of the big problems. This work shows some results obtained by an implementation of a parallel score estimating technique for the score matrix calculation stage, which is the first stage of a progressive multiple sequence alignment. The performance and quality of the parallel score estimating are compared with the results of a dynamic programming approach also implemented in parallel. This comparison shows a significant reduction of running time. Moreover, the quality of the final alignment, using the new strategy, is analyzed and compared with the quality of the approach with dynamic programming.
Resumo:
Large scale combinatorial problems such as the network expansion problem present an amazingly high number of alternative configurations with practically the same investment, but with substantially different structures (configurations obtained with different sets of circuit/transformer additions). The proposed parallel tabu search algorithm has shown to be effective in exploring this type of optimization landscape. The algorithm is a third generation tabu search procedure with several advanced features. This is the most comprehensive combinatorial optimization technique available for treating difficult problems such as the transmission expansion planning. The method includes features of a variety of other approaches such as heuristic search, simulated annealing and genetic algorithms. In all test cases studied there are new generation, load sites which can be connected to an existing main network: such connections may require more than one line, transformer addition, which makes the problem harder in the sense that more combinations have to be considered.
Resumo:
We introduce a new hybrid approach to determine the ground state geometry of molecular systems. Firstly, we compared the ability of genetic algorithm (GA) and simulated annealing (SA) to find the lowest energy geometry of silicon clusters with six and 10 atoms. This comparison showed that GA exhibits fast initial convergence, but its performance deteriorates as it approaches the desired global extreme. Interestingly, SA showed a complementary convergence pattern, in addition to high accuracy. Our new procedure combines selected features from GA and SA to achieve weak dependence on initial parameters, parallel search strategy, fast convergence and high accuracy. This hybrid algorithm outperforms GA and SA by one order of magnitude for small silicon clusters (Si6 and Si10). Next, we applied the hybrid method to study the geometry of a 20-atom silicon cluster. It was able to find an original geometry, apparently lower in energy than those previously described in literature. In principle, our procedure can be applied successfully to any molecular system. © 1998 Elsevier Science B.V.
Resumo:
An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement. © 2008 IEEE.
Resumo:
In this work it is proposed an optimized dynamic response of parallel operation of two single-phase inverters with no control communication. The optimization aims the tuning of the slopes of P-ω and Q-V curves so that the system is stable, damped and minimum settling time. The slopes are tuned using an algorithm based on evolutionary theory. Simulation and experimental results are presented to prove the feasibility of the proposed approach. © 2010 IEEE.
Resumo:
A significant set of information stored in different databases around the world, can be shared through peer-topeer databases. With that, is obtained a large base of knowledge, without the need for large investments because they are used existing databases, as well as the infrastructure in place. However, the structural characteristics of peer-topeer, makes complex the process of finding such information. On the other side, these databases are often heterogeneous in their schemas, but semantically similar in their content. A good peer-to-peer databases systems should allow the user access information from databases scattered across the network and receive only the information really relate to your topic of interest. This paper proposes to use ontologies in peer-to-peer database queries to represent the semantics inherent to the data. The main contribution of this work is enable integration between heterogeneous databases, improve the performance of such queries and use the algorithm of optimization Ant Colony to solve the problem of locating information on peer-to-peer networks, which presents an improve of 18% in results. © 2011 IEEE.
Resumo:
In a peer-to-peer network, the nodes interact with each other by sharing resources, services and information. Many applications have been developed using such networks, being a class of such applications are peer-to-peer databases. The peer-to-peer databases systems allow the sharing of unstructured data, being able to integrate data from several sources, without the need of large investments, because they are used existing repositories. However, the high flexibility and dynamicity of networks the network, as well as the absence of a centralized management of information, becomes complex the process of locating information among various participants in the network. In this context, this paper presents original contributions by a proposed architecture for a routing system that uses the Ant Colony algorithm to optimize the search for desired information supported by ontologies to add semantics to shared data, enabling integration among heterogeneous databases and the while seeking to reduce the message traffic on the network without causing losses in the amount of responses, confirmed by the improve of 22.5% in this amount. © 2011 IEEE.
Resumo:
Multi-relational data mining enables pattern mining from multiple tables. The existing multi-relational mining association rules algorithms are not able to process large volumes of data, because the amount of memory required exceeds the amount available. The proposed algorithm MRRadix presents a framework that promotes the optimization of memory usage. It also uses the concept of partitioning to handle large volumes of data. The original contribution of this proposal is enable a superior performance when compared to other related algorithms and moreover successfully concludes the task of mining association rules in large databases, bypass the problem of available memory. One of the tests showed that the MR-Radix presents fourteen times less memory usage than the GFP-growth. © 2011 IEEE.
Resumo:
Aiming to ensure greater reliability and consistency of data stored in the database, the data cleaning stage is set early in the process of Knowledge Discovery in Databases (KDD) and is responsible for eliminating problems and adjust the data for the later stages, especially for the stage of data mining. Such problems occur in the instance level and schema, namely, missing values, null values, duplicate tuples, values outside the domain, among others. Several algorithms were developed to perform the cleaning step in databases, some of them were developed specifically to work with the phonetics of words, since a word can be written in different ways. Within this perspective, this work presents as original contribution an optimization of algorithm for the detection of duplicate tuples in databases through phonetic based on multithreading without the need for trained data, as well as an independent environment of language to be supported for this. © 2011 IEEE.
Resumo:
This paper presents the design of a high-speed coprocessor for Elliptic Curve Cryptography over binary Galois Field (ECC- GF(2m)). The purpose of our coprocessor is to accelerate the scalar multiplication performed over elliptic curve points represented by affine coordinates in polynomial basis. Our method consists of using elliptic curve parameters over GF(2163) in accordance with international security requirements to implement a bit-parallel coprocessor on field-programmable gate-array (FPGA). Our coprocessor performs modular inversion by using a process based on the Stein's algorithm. Results are presented and compared to results of other related works. We conclude that our coprocessor is suitable for comparing with any other ECC-hardware proposal, since its speed is comparable to projective coordinate designs.
Resumo:
Sao Paulo State Research Foundation-FAPESP