54 resultados para papillary muscle
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We investigated the influence of myocardial collagen volume fraction (CVF, %) and hydroxyproline concentration (mu g/mg) on rat papillary muscle function. Collagen excess was obtained in 10 rats with unilateral renal ischemia for 5 wk followed by 3-wk treatment with ramipril (20 mg . kg(-1) . day(-1)) (RHTR rats; CVF = 3.83 +/- 0.80, hydroxyproline = 3.79 +/- 0.50). Collagen degradation was induced by double infusion of oxidized glutathione (GSSG rats; CVF 5 2.45 +/- 0.52, hydroxyproline = 2.85 +/- 0.18). Nine untreated rats were used as controls (CFV = 3.04 +/- 0.58, hydroxyproline = 3.21 +/- 0.30). Active stiffness (AS; g . cm(-2) . %L-max(-1)) and myocyte cross-sectional area (MA; mu m(2)) were increased in the GSSG rats compared with controls [AS 5.86 vs. 3.96 (P< 0.05); MA 363 +/- 59 vs. 305 +/- 28 (P< 0.05)]. In GSSG and RHTR groups the passive tension-length curves were shifted downwards, indicating decreased passive stiffness, and upwards, indicating increased passive stiffness, respectively. Decreased collagen content induced by GSSG is related to myocyte hypertrophy, decreased passive stiffness, and increased AS, and increased collagen concentration causes myocardial diastolic dysfunction with no effect on systolic function.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Isolated papillary muscles have often been used in myocardial mechanical function studies. The objective of the present study was to compare the mechanical function of papillary muscle isolated from left ventricle between Wistar (W) and Wistar-Kyoto (WKY) rats of different ages (1, 3, 6 and 12 months), in order to examine whether there is a difference in intrinsic mechanical properties of muscle between the two rat strains. Muscles were perfused with Krebs-Henseleit solution at 28°C and studied isometrically and isotonically at a stimulation rate of 0.2 Hz. The W and WKY showed statistically significant differences during both isometric and isotonic contractions. During isometric contraction? (l) the peak developed tension (DT) and + dT/dt were lower in WKY rats in the 1 mo groups, (2) the resting tension (RT) was greater in WKY at 3, 6 and 12 mo. (3) time to peak tension (TPT) was greater in WKY at 3 and 12 mo, (4) time for tension to fall from peak to 50% of peak tension (RT 1/2) was greater in WKY at 3 mo and (5) - dT/dt was lower in WKY at 1 and 3 mo. During isotonic contraction, (1) the peak shortening (PS) and -dL/dt were lower in WKY at 12 mo, (2) the time to peak shortening (TPS) was greater in WKY at 3 and 12 mo; (3) + dL/dt was lower in WKY at 3, 6, and 12 mo and (4) the relative variation of length (Lmax-PS)/Lmax was greater in WKY at 6 and 12 mo. These data showed a difference in mechanical behaviour of the papillary muscle between Wistar and Wistar-Kyoto rats of different age.
Resumo:
In this study we assessed the mechanical function of isolated left ventricular papillary muscles from 60 day-old male Wistar-Kyoto rats (WKY) subjected to different periods of food restriction (FR). The food-restricted animals (R) were fed 50% of the amount of diet consumed by the ad Libitum-fed rats (C). The cardiac muscles were studied after 30, 60, and 90 days (R-30, R-60 and R-90) of FR. The effect of FR on myocardial collagen concentration was also evaluated. The parameters from the three control groups that were statistically identical were combined and the control pool group (CP) was formed. The left ventricular weight-to-body weight ratio was lower in the R-30 and higher in the R-60 and R-90 in relation to their control groups. Hydroxyproline concentration was higher only in R-90 compared to CP and R-30. Myocardial mechanical function was the same in the C groups. The comparisons between CP and FR groups showed that: the muscles of R-30 presented increased resting tension and maximum rate of tension decline, and decreased velocity of shortening; the muscles of R-60 and R-90 groups showed a prolongation of the time to peak tension (TPT) and the time to peak shortening (TPS); and R-30 had an increased time from peak tension to 50% relaxation (RT1/2). Increases in TPT, TPS, and RT1/2 in groups R-60 and R-90 were significant in relation to R-30. In conclusion, while FR for 30 days produces disparate effects on myocardial performance, FR for 60 and 90 days prolongs the contraction period. The change of relaxation time in R-90 might be related to the increased myocardial collagen content. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: To assess the effect of food restriction (FR) on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR). METHODS: Isolated papillary muscle preparations of the left ventricle (LV) of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY) rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet) for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1) reduction in the body weight and LV weight of SHR and WKY rats; 2) increase in the time to peak shortening and the time to peak developed tension (DT) in the hypertrophied myocardium of the SHR; 3) diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.
Resumo:
Background: the effect of food restriction (FR) on myocardial performance has been studied in normal hearts. Few experiments analyzed the effects of undernutrition on hearts subjected to cardiac overload. The aim of this study was to determine whether chronic FR promotes more significant changes in hypertrophied hearts than in normal hearts. Methods: Myocardial performance was studied in isolated left ventricular papillary muscle from young male spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY) submitted to FR or to control diet. The animals subjected to FR were fed 50% of the amount of food consumed by control groups for 60 days. Isolated muscles were studied while contracting isometrically and isotonically. Results: FR decreased the body weight and the left ventricular weight in both groups. FR increased the left ventricular weight-to-body weight ratio in the WKY rats and tended to decrease this ratio in SHR (P = 0.055). The arterial systolic pressure was greater in SHR than in WKY groups and did not change with FR. In the animals with normal diet, myocardial performance was better in SHR than in WKY. FR increased time to tension to fall from peak to 50% of peak tension and time to peak tension in the WKY rats and time to peak tension in the SHR. Conclusions: FR for 60 days has a trend to attenuate the development of cardiac hypertrophy and does not promote more mechanical functional changes in the hypertrophied myocardium than in the normal cardiac muscle.
Resumo:
Objective: To examine the basis for local wall motion abnormalities commonly seen in patients with ischemic heart disease, computer-controlled isolated muscle studies were carried out. Methods: Force patterns of physiologically sequenced contractions (PSCs) from rat left ventricular muscle preparations under well-oxygenated conditions and during periods of hypoxia and reoxygenation were recorded and stored in a computer. Force patterns of hypoxic-reoxygenating and oxygenated myocardium were applied to oxygenated and hypoxic-reoxygenating myocardium, respectively. Results: Observed patterns of shortening and lengthening closely resemble those obtained from ischemic and non-ischemic myocardial segments using ultrasonic crystals in intact dog hearts during coronary occlusion and reperfusion, and are similar to findings reported in angiographic studies of humans with coronary artery disease. Conclusion: The current study, demonstrating motions of oxygenated isolated muscle preparations which are similar to those in perfused segments of intact hearts with regional ischemia, supports the concept that the multiple motions of both ischemic and non-ischemic segments seen in regional myocardial disease can be explained by interactions of strongly and weakly contracting muscle during the physiologic cardiac cycle.
Resumo:
Background: The aim of this study was to analyze stable hypertrophied myocardial function and its response to inotropic maneuvers in rats submitted to renovascular hypertension for a 10-week period (RHT group, n=10). Material/Methods: Myocardial performance was studied in isolated left ventricle papillary muscles in isometric contraction under the following conditions: at postrest contraction of 30 seconds (PRC), at extracellular calcium (ECa 2+) chloride concentration of 1.25 and 5.20 mM, and after beta-adrenergic stimulation with 10 -6 M isoproterenol (ISOP). Results: The results were compared with normotensive Wistar controls rats (C group, n=10). In basal condition, resting tension, and contraction time (TPT) were greater, while relaxation time (RT 50) tended to be longer in RHT than C group. PRC and ISOP promoted a similar change in muscle function response intensity (Δ) in both groups. ECa 2+ shift did not change TPT in the C group and decreased TPT in the RHT animals; Δ was different between these groups. RT 50 increased in C and decreased in RHT, both without statistical significance; however, Δ was different. Conclusions: These results suggest that hypertrophied myocardial dysfunction may be attibuted to changes in intracellular calcium cycling. © Med Sci Monit, 2010.
Resumo:
Diets rich in saturated fatty acids are one of the most important causes of atherosclerosis in men, and have been replaced with diets rich in unsaturated fatty acids (UFA) for the prevention of this disorder. However, the effect of UFA on myocardial performance, metabolism and morphology has not been completely characterized. The objective of the present investigation was to evaluate the effects of a UFA-rich diet on cardiac muscle function, oxidative stress, and morphology. Sixty-day-old male Wistar rats were fed a control (N = 8) or a UFA-rich diet (N = 8) for 60 days. Myocardial performance was studied in isolated papillary muscle by isometric and isotonic contractions under basal conditions after calcium chloride (5.2 mM) and ss-adrenergic stimulation with 1.0 mu M isoproterenol. Fragments of the left ventricle free wall were used to study oxidative stress and were analyzed by light microscopy, and the myocardial ultrastructure was examined in left ventricle papillary muscle. After 60 days the UFA-rich diet did not change myocardial function. However, it caused high lipid hydroperoxide (176 +/- 5 vs 158 +/- 5, P < 0.0005) and low catalase (7 +/- 1 vs 9 +/- 1, P < 0.005) and superoxide-dismutase (18 +/- 2 vs 27 +/- 5, P < 0.005) levels, and discrete morphological changes in UFA-rich diet hearts such as lipid deposits and mitochondrial membrane alterations compared to control rats. These data show that a UFA-rich diet caused myocardial oxidative stress and mild structural alterations, but did not change mechanical function.
Resumo:
Food restriction (FR) has been shown to induce important morphological changes in rat myocardium. However, its influence on myocardial performance is not completely defined. We examined the effects of chronic FR on cardiac muscle function and morphology. Sixty-day-old Wistar-Kyoto rats were fed a control (C) or a restricted diet (daily intake reduced to 50% of the amount of food consumed by the control group) for 90 days. Myocardial performance was studied in isolated left ventricular (LV) papillary muscle. Fragments of the LV free wall were analysed by light microscopy, and the ultrastructure of the myocardium was examined in the LV papillary muscle. The myocardial collagen concentration was also evaluated. FR decreased body weight (BW) and LV weight (LVW); the LVW/BW ratio was higher in the restricted group (C, 1.86 +/- 0.17 mg/g; FR, 2.19 +/- 0.31 mg/g; p < 0.01). In the FR animals, the cardiac fibers were polymorphic, some of them were of small diameter and others presented lateral infoldings; the ultrastructural alterations were focal and included reduction of sarcoplasmic content, absence and (or) disorganization of myofilaments and Z line, numerous electron dense and polymorphic mitochondria, and deep infoldings of the plasma membrane. The hydroxyproline concentration was higher in the FR animals (p < 0.01). FR prolonged the contraction and relaxation time of the papillary muscle and did not change its ability to contract and shorten. In conclusion, although a 90-day period of FR caused striking myocardial ultrastructural alterations and increased the collagen concentration, it only minimally affected the mechanical function.
Resumo:
Several studies have shown alterations in hearts from animals subjected to food restriction (FR). However, few experiments in hearts evaluating pressure overload have been reported. We examined the effects of chronic FR on myocardial function and morphology in spontaneously hypertensive rats (SHR). Sixty-day-old SHR were fed a control (C) or a restricted diet (daily intake reduced to 50% of amount of food consumed by the control group) for 90 days. Myocardial performance was studied in isolated left ventricular (LV) papillary muscle. Food restriction decreased body weight and LV weight; LV weight/body-weight ratio was lower in the food-restricted group (SHR-C, 2.84 +/- 0.21 mg/g; SHR-FR, 2.56 +/- 0.24 mg/g; P <.05). Food restriction did not change arterial systolic blood pressure. Myocyte surface area was lower in the food-restricted group (P <.01). Food restriction induced myocardial ultrastructural alterations including reduced sarcoplasm content, reduced and disorganized myofilaments, disorganized Z line, dilated sarcoplasmic reticulum, and deep infoldings of plasma membrane. Myocardial hydroxyproline concentration was increased in the restricted rats. Peak developed tension (P <.05) and maximum rate of tension development (P <.01) were decreased in the SHR-FR group. In conclusion, myocardium of SHR subjected to chronic FR presents attenuation of hypertrophy development, ultrastructural changes, increased collagen content, and systolic dysfunction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to evaluate the-effect of interstitial fibrosis alone or associated with hypertrophy. on diastolic myocardial function in renovascular hypertensive rats. Myocardial function was evaluated in isolated papillary muscle from renovascular hypertensive Wistar rats (RHT, n = 14), renovascular hypertensive rats treated with the angiotensin converting enzyme inhibitor (ACEI) ramipril, 20 mg.kg(-1).day(-1) (RHT RAM, n = 14), and age-matched unoperated and untreated Wistar rats (CONT, n = 12). The ACEI treatment for 3 weeks allowed the regression of myocyte mass and the maintenance of interstitial fibrosis. Myocardial passive stiffness was analyzed by the resting tension - length relationship. The myocardial fibrosis was evaluated by measuring myocardial hydroxyproline (Hyp) concentration and by histological studies of the myocardium stained with hematoxylin and eosin or picrosirius red. Left ventricular weight was significantly higher in RHT (0.97 +/- 0.12 g) compared with CONT (0.66 +/- 0.06 g) and RHT RAM (0.69 +/- 0.14 g). The Hyp levels were 2.9 +/- 0.4, 3.4 +/- 0.3, and 3.8 +/- 0.4 mu g/mg of dry tissue for the CONT, RHT, and RHT RAM, respectively. Perivascular and interstitial fibrosis were observed in RHT and RHT RAM groups. There were lymphomononuclear inflammatory exudate and edema around arteries, involving adjacent myocytes in the RHT group. There was an increased passive stiffness in RHT and RHT RAM groups compared with the CONT group. In conclusion, our results indicate that the Impaired diastolic function in the renovascular hypertensive rats is related to interstitial fibrosis rather than to myocardial hypertrophy.
Resumo:
The aging spontaneously hypertensive rat (SHR) is a model in which the transition from chronic stable left ventricular hypertrophy to overt heart failure can be observed. Although the mechanisms for impaired function in hypertrophied and failing cardiac muscle from the SHR have been studied, none accounts fully for the myocardial contractile abnormalities. The cardiac cytoskeleton has been implicated as a possible cause for myocardial dysfunction. If an increase in microtubules contributes to dysfunction, then myocardial microtubule disruption by colchicine should promote an improvement in cardiac performance. We studied the active and passive properties of isolated left ventricular papillary muscles from 18- to 24-month-old SHR with evidence of heart failure (SHR-F, n=6), age-matched SHR without heart failure (SHR-NF, n=6), and age-matched normotensive Wistar-Kyoto rats (WKY, n=5). Mechanical parameters were analyzed before and up to 90 minutes after the addition of colchicine (10(-5), 10(-4), and 10(-3) mol/L). In the baseline state, active tension (AT) developed by papillary muscles from the WKY group was greater than for SHR-NF and SHR-F groups (WKY 5.69+/-1.47 g/mm(2) [mean+/-SD], SHR-NF 3.41+/-1.05, SHR-F 2.87+/-0.26; SHR-NF and SHR-F P<0.05 versus WKY rats). The passive stiffness was greater in SHR-F than in the WKY and SHR-NF groups (central segment exponential stiffness constant, K-cs: SHR-F 70+/-25, SHR-NF 44+/-17, WKY 41+/-13 [mean+/-SD]; SHR-F P<0.05 versus; SHR-NF and WKY rats). AT did not improve after 10, 20, and 30 minutes of exposure to colchicine (10(-5), 10(-4), and 10(-3) mol/L) in any group. In the SHR-F group, AT and passive stiffness did not change after 30 to 90 minutes of colchicine exposure (10(-4) mol/L). In summary, the data in this study fail to demonstrate improvement of intrinsic muscle function in SHR with heart failure after colchicine. Thus, in the SHR there is no evidence that colchicine-induced cardiac microtubular depolymerization affects the active or passive properties of hypertrophied or failing left ventricular myocardium.
Resumo:
Food restriction (FR) has been shown to impair myocardial performance. However, the mechanisms behind these changes in myocardial function due to FR remain unknown. Since myocardial L-type Ca2+ channels may contribute to the cardiac dysfunction, we examined the influence of FR on L-type Ca2+ channels. Male 60-day-old Wistar rats were fed a control or a restricted diet (daily intake reduced to 50% of the amount of food consumed by the control group) for 90 days. Myocardial performance was evaluated in isolated left ventricular papillary muscles. The function of myocardial L-type Ca2+ channels was determined by using a pharmacological Ca2+ channel blocker, and changes in the number of channels were evaluated by mRNA and protein expression. FR decreased final body weights, as well as weights of the left and right ventricles. The Ca2+ channel blocker diltiazem promoted a higher blockade on developed tension in FR groups than in controls. The protein content of L-type Ca2+ channels was significantly diminished in FR rats, whereas the mRNA expression was similar between groups. These results suggest that the myocardial dysfunction observed in previous studies with FR animals could be caused by downregulation of L-type Ca2+ channels.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)