145 resultados para pH effect
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The effect of the bath pH on the electrodeposition of nanocrystalline Pd-Co alloys and on their magnetic properties was studied. The pH practically did not affect the alloy composition. Conversely, the pH showed a significant influence on the shape and size of crystallites. Two different crystallites morphology were observed depending on the bath pH. A crystallite size ranging from 18.2 to 30 nm was obtained from X-ray diffractometry (XRD) patterns using the Scherrer's method. Also from the XRD patterns the lattice strain percentage was calculated and correlated with the residual stress, which probably originated during the film electrodeposition on the substrate. Some alloy magnetic properties showed small variations. In contrast, high and unexpected coercivities were obtained reaching a maximum of 1.69 kOe at pH 5.5. The high coercivity values were attributed to the presence of residual stress at the film-substrate interface, which increased as the bath pH and crystallite size decrease, both of them contributing simultaneously to increase in coercivity. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the effect of the addition of 5% calcium chlorite (CaCl2) on pH values in calcium hydroxide pastes (CH), with or without 2% chlorhexidine digluconate (CHX) used as vehicle, in several periods analysis. Polyethylene tubes were filled with CH mixed with water (G1), 2% CHX solution (G2) or gel (G3), or CHX solution or gel with 5% CaCl2 (G4 and G5, respectively). All tubes were individually immersed in distilled water. After 12, 24 hours, 7, 14 and 28 days, pH value was evaluated directly in water which the tubes were stored. Data were submitted to ANOVA and Tukey tests (α=0.05). In 24 hs and 14 days, pH values were similar to all groups. In 12 hs, the G1 presented lower pH value than other groups except to G4 (p < 0.05), and G4 presented lower pH value than G5 (p < 0.05). In 7 days, G1 presented lower pH value than G4 and G5 (p < 0.05). In 28 days, G1 and G5 presented lower pH values than G2 and G4 (p < 0.05) and among other groups there are no statistical differences (p > 0.05). The pH values increased in long-term analysis to all CH pastes. The association of 5% calcium chloride with 2% CHX solution as vehicle of CH paste provided a pH value increase in relation to CH mixed with distilled water. The CHX gel interfered negatively on pH value in comparison to CHX solution when mixed with CaCl2.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The electroanalytical determination of isoprenaline in pharmaceutical preparations of a homemade carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) was studied by cyclic voltammetry. Several parameters were studied for the optimization of the sensor such as electrode composition, electrolytic solution, pH effect, potential scan rate and interferences in potential. The optimum conditions were found in an electrode composition (in mass) of 15% CuHCF, 60% graphite and 25% mineral oil in 0.5 mol l(-1) acetate buffer solution at pH 6.0. The analytical curve for isoprenaline was linear in the concentration range from 1.96 x 10(-4) to 1.07 x 10(-3) mol l(-1) with a detection limit of 8.0 x 10(-5) mol l(-1). The relative standard deviation was 1.2% for 1.96 x 10(-4) mol l(-1) isoprenaline solution (n=5). The procedure was successfully applied to the determination of isoprenaline in pharmaceutical preparations; the CuHCF modified carbon paste electrode gave comparable results to those results obtained using a UV spectrophotometric method. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
O assentamento de células de leveduras no fundo das dornas e perdas de células nas centrífugas podem ser causadas por bactérias floculantes, contaminantes naturais da fermentação alcoólica industrial. Estes problemas levam a queda no rendimento e produtividade do etanol. O presente trabalho visa a caracterização da floculação de Saccharomyces cerevisiae por Lactobacillus fermentum CCT 1396. As células de leveduras e bactérias foram misturadas e a floculação das células quantificadas por espectrofotometria. Concentrações de bactérias numa faixa de 0,4 a 3,8g/L (biomassa seca) foram testadas a fim de determinar a ótima concentração de bactérias necessária para provocar a floculação das leveduras. O efeito de pH na floculação das células de leveduras e bactérias foi determinado. 1,38g/L de bactéria foi necessário para a floculação, de 65,4g/L de células de levedura com tempo de contato entre as células (sob agitação) de 15 minutos e repouso de 20 minutos. No pH 3,0 pouco efeito na floculação celular foi detectado e as células continuaram floculadas, mas na faixa de pH 2,0 -- 2,5 a floculação foi próxima de zero. Esta técnica pode ser utilizada para o controle da floculação de leveduras de indústrias de produção de álcool, para determinar a origem desta floculação, já que trata-se de uma técnica fácil, econômica e rápida.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes the characterization of the [Mn2 IV,IVO2(terpy)2(H2O)2]4+ complex in aqueous solution by UV-vis spectrophotometry, cyclic voltammetry, and linear sweep voltammetry with a rotating disk electrode. The pH effect, potential scan rate, effect of perfluorosulfonate polymer, and anion of supporting electrode on the electrochemical behavior of the modified electrode for better performance were investigated. The potential peak of the modified electrode was linearly dependent upon the ratio [ionic charge]/[ionic radius]. The modified electrode exerted an electrocatalytic effect on dopamine oxidation in aqueous solution with a decrease in the overpotential compared with the unmodified glassy carbon electrode. This way, the modified electrode showed an enzymatic biomimicking behavior. Tafel plot analyses were used to elucidate the kinetics and mechanism of dopamine oxidation. © 2013 Springer Science+Business Media New York.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
There is a g-rowing body of evidence that melatonin and its oxidation product, N-1-acetyl-N-2-formyl-5-methoxykynuramine (AFMK), have anti-inflammatory properties. From a nutritional point of view, the discovery of melatonin in plant tissues emphasizes the importance of its relationship with plant peroxidases. Here we found that the pH of the reaction mixture has a profound influence in the reaction rate and products distribution when melatonin is oxidized by the plant enzyme horseradish peroxidase. At pH 5.5. 1 mm of melatonin was almost completely oxidized within 2 min, whereas only about 3% was consumed at pH 7.4. However, the relative yield of AFMK was higher in physiological pH. Radical-mediated oxidation products, including 2-hydroxymelatonin a dimer of, 2-hydroxymelatonin and O-demethylated dimer of melatonin account for the fast consumption of melatonin at pH 5.5. The higher production of AFMK at pH 7.4 was explained by the involvement of compound III of peroxidases as evidenced by spectral studies. on the other hand, the fast oxidative degradation at pH 5.5 was explained by the classic peroxidase cycle.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluated the effect of cycling various pH demineralizing solutions on the surface hardness, fluoride release and surface properties of restorative materials (Ketac-Fil Plus, Vitremer, Fuji II LC, Freedom and Fluorofil). Thirty specimens of each material were made and the surface hardness measured. The specimens were randomized into five groups according to the pH (4.3; 4.6; 5.0; 5.5 and 6.2) of the demineralizing solution. The specimens were submitted to pH-cycling for 15 days. The specimens remained in the demineralizing solution for six hours and in the remineralizing solution for 18 hours. Then, the surface hardness (SH) was remeasured and the surface properties were assessed. Fluoride release was determined daily. Data from SH and the percentage of alteration in surface hardness were analyzed by analysis of variance (p < 0.05); the Kruskal-Wallis test was performed for the fluoride release results. When hardness was compared, the variation in pH led to a positive correlation for glass ionomer cements and a negative correlation for fluoride release. For polyacid-modified resin composites, a negative correlation was found with regards to fluoride release; no significant correlation was observed for hardness. Surface properties were influenced: an acidic pH led to a greater alteration, except for polyacid-modified resin composites. The pH of the demineralizing solution influenced fluoride release from the tested materials. The pH variation altered hardness and surface properties of glass ionomer cements but did not influence polyacid-modified resin composites.
Resumo:
This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey's tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)