2 resultados para oxyluciferin
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The luciferases of the railroad worm Phrixotrix (Coleoptera: Phengodidae) are the only beetle luciferases that naturally produce true red bioluminescence. Previously, we cloned the green- (PxGR) and red-emitting (PxRE) luciferases of railroad worms Phrixotrix viviani and P. hirtus[OLE1]. These luciferases were expressed and purified, and their active-site properties were determined. The red-emitting PxRE luciferase displays flash-like kinetics, whereas PxGR luciferase displays slow-type kinetics. The substrate affinities and catalytic efficiency of PxRE luciferase are also higher than those of PxGR luciferase. Fluorescence studies with 8-anilino-1-naphthalene sulfonic acid and 6-p-toluidino-2-naphthalene sulfonic acid showed that the PxRE luciferase luciferin-binding site is more polar than that of PxGR luciferase, and it is sensitive to guanidine. Alutagenesis and modelling studies suggest that several invariant residues in the putative luciferin-binding site of PxRE luciferase cannot interact with excited oxyluciferin. These results suggest that one portion of the luciferin-binding site of the red-emitting luciferase is tighter than that of PxGR luciferase, whereas the other portion could be more open and polar.
Resumo:
Phrixotrix (railroad worm) luciferases produce bioluminescence in the green and red regions of the spectrum, depending on the location of the lanterns, and are the only luciferases naturally producing red bioluminescence. Comparison of the luciferase sequences showed a set of substitutions that could be involved in bioluminescence colour determination: (a) unique substitutions in the red luciferase replacing otherwise invariant residues; (b) conserved basic residues in the green-yellow emitting luciferases; and (c) an additional R353 residue in red-emitting luciferase (Viviani et al., 1999). To investigate whether these sites have a functional role in bioluminescence colour determination, we performed a site-directed mutagenesis. Natural substitutions in the region 220-344 and residues in the putative luciferin-binding site were also investigated. With the exception of the previously identified substitution of R215 and T226 (Viviani et al., 2002), which display dramatic red-shift effects on the spectrum of green-yellow-emitting luciferases, only a few substitutions had a moderate effect on the spectrum of the green-emitting luciferase. In contrast, no single substitution affected the spectrum of the red-emitting luciferase. The results suggest that the identity of the active site residues is not so critical for determining red bioluminescence in PxRE luciferase. Rather, the conformation assumed during the emitting step could be critical to set up proper interactions with excited oxyluciferin. Copyright ©2007 John Wiley & Sons, Ltd.