11 resultados para optimum currency area theory

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a (3+1)-dimensional local field theory defined on the sphere S-2. The model possesses exact soliton solutions with nontrivial Hopf topological charges and an infinite number of local conserved currents. We show that the Poisson bracket algebra of the corresponding charges is isomorphic to that of the area-preserving diffeomorphisms of the sphere S-2. We also show that the conserved currents under consideration are the Noether currents associated to the invariance of the Lagrangian under that infinite group of diffeomorphisms. We indicate possible generalizations of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When an area to be irrigated has a high slope gradient in the manifold line direction, an option is to use a tapered pipeline to economize on pipe costs and to keep pressure head variations within desired limits. The objective of this paper is to develop a linear optimization model to design a microirrigation system with tapered, downhill manifold lines, minimizing the equivalent annual cost of the hydraulic network and the annual pumping cost, and maximizing the emission uniformity previously established to the subunit. The input data are irrigation system layout, cost of all hydraulic network components, and electricity price. The output data are equivalent annual cost, pipeline diameter in each line of the system, pressure head in each node, and total operating pressure head. To illustrate its capability, the model is applied in a citrus orchard in Sao, Paulo State, Brazil, considering slopes of 3, 6, and 9%. The model proved to be efficient in the design of the irrigation system in terms of the emission uniformity desired.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of an effective surface charge density has allowed the Gouy-Chapman (CC) theory to explain surface potential isotherms of Langmuir monolayers of dioctadecyldimethylammonium bromide (DODAB). The effective surface charge density of DODAB monolayer increases with the electronegativity of the counterions in the subphase. The pressure-area isotherms indicate a very condensed monolayer for DODAB spread on an I--containing subphase, which exhibits the lowest surface charge density, whereas the monolayer on a F-containing subphase is extremely expanded owing to the high surface charge density or electrostatic repulsion between headgroups. (C) 2001 Published by Elsevier B.V. B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces the concept of special subsets when applied to generator matrices based on lattices and cosets as presented by Calder-bank and Sloane. By using the special subsets we propose a non exhaustive code search for optimum codes. Although non exhaustive, the search always results in optimum codes for given (k1, V, Λ/Λ′). Tables with binary and ternary optimum codes to partitions of lattices with 8, 9 e 16 cosets, were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Optimum-Path Forest (OPF) classifier is a recent and promising method for pattern recognition, with a fast training algorithm and good accuracy results. Therefore, the investigation of a combining method for this kind of classifier can be important for many applications. In this paper we report a fast method to combine OPF-based classifiers trained with disjoint training subsets. Given a fixed number of subsets, the algorithm chooses random samples, without replacement, from the original training set. Each subset accuracy is improved by a learning procedure. The final decision is given by majority vote. Experiments with simulated and real data sets showed that the proposed combining method is more efficient and effective than naive approach provided some conditions. It was also showed that OPF training step runs faster for a series of small subsets than for the whole training set. The combining scheme was also designed to support parallel or distributed processing, speeding up the procedure even more. © 2011 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we shed light over the problem of landslide automatic recognition using supervised classification, and we also introduced the OPF classifier in this context. We employed two images acquired from Geoeye-MS satellite at March-2010 in the northwest (high steep areas) and north sides (pipeline area) covering the area of Duque de Caxias city, Rio de Janeiro State, Brazil. The landslide recognition rate has been assessed through a cross-validation with 10 runnings. In regard to the classifiers, we have used OPF against SVM with Radial Basis Function for kernel mapping and a Bayesian classifier. We can conclude that OPF, Bayes and SVM achieved high recognition rates, being OPF the fastest approach. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Biometria - IBB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general, pattern recognition techniques require a high computational burden for learning the discriminating functions that are responsible to separate samples from distinct classes. As such, there are several studies that make effort to employ machine learning algorithms in the context of big data classification problems. The research on this area ranges from Graphics Processing Units-based implementations to mathematical optimizations, being the main drawback of the former approaches to be dependent on the graphic video card. Here, we propose an architecture-independent optimization approach for the optimum-path forest (OPF) classifier, that is designed using a theoretical formulation that relates the minimum spanning tree with the minimum spanning forest generated by the OPF over the training dataset. The experiments have shown that the approach proposed can be faster than the traditional one in five public datasets, being also as accurate as the original OPF. (C) 2014 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Educação Escolar - FCLAR