35 resultados para optical waveguides
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Organic-inorganic hybrids were prepared using ureapropyltriethoxysilane, methacryloxypropyltrimethoxysilane and acrylic acid modified zirconium(IV) n-propoxide precursors and were characterized by small angle X-ray scattering, X-ray diffraction and photoluminescence spectroscopy. The results indicate an effective interaction between the zirconium-based nanoparticles and the siliceous nanodomains that induces changes in the hybrids' emission features. Planar waveguides were obtained by spin-coating of the prepared sols on sodalime and silica substrates. Refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm by the prism coupling technique. The synergism between the two hybrid precursors resulted in monomode planar waveguides with low losses in the infrared ( from 0.6-1.1 dB cm(-1)) which also support a number of propagating modes in the visible ( losses from 0.4-1.5 dB cm(-1)). Channel waveguides were also obtained by UV photopatterning using amplitude or phase masks and propagating modes were observed at 1550 nm.
Resumo:
This work presents studies of GeO2-PbO thin films deposited by RF Sputtering for fabrication of rib-waveguide. GeO2-PbO vitreous targets were prepared melting the reagents in alumina crucible. Thin films were deposited at room temperature using pure Ar plasma, at 5 mTorr pressure and RF power of 40 W on substrates of (100) silicon wafers. Rutherford Backscattering Spectroscopy (RBS) analyses were employed for the determination of the chemical elements present in the GeO2-PbO film. Geometry and sidewall of the waveguides were investigated by Scanning Electron Microscopy (SEM). The mode propagation in the waveguide structure of GeO2-PbO thin films was analyzed using an integrated optic simulation software to obtain a monomode propagation. © The Electrochemical Society.
Resumo:
In this work we present results on the preparation of planar waveguides based on HfO2 and HfO2-SiO2. Stable sols containing europium and erbium doped HfO2 nanoparticles have been prepared and characterized. The nanosized sol was either deposited (spin-coating) on quartz substrates or embedded in (3-glycidoxipropil)trimethoxisilane (GPTS) used as a hybrid host for posterior deposition. The refractive index dispersion and luminescence characteristics were determined for the resulting HfO2 films. The optical parameters of the waveguides such as refractive index, thickness and propagation losses were measured for the hybrid composite. The planar waveguides present thickness of a few micra and support well confined propagating modes.
Resumo:
Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.
Resumo:
This work presents the application of a scalar finite element formulation for Ex (TE-like) modes in anisotropic planar and channel waveguides with diagonal permittivity tensor, diffused in both transversal directions. This extended formulation considers explicitly both the variations of the refractive index and their spatial derivates inside of each finite element. Dispersion curves for Ex modes in planar and channel waveguides are shown, and the results compared with solutions obtained by other formulations.
Resumo:
Planar waveguides have been prepared on the ZrO2-(3-glycidiloxypropyl)trimethoxysilane (GPTS) system. Stable sols containing ZrO2 nanoparticles have been prepared and characterized by Photon Correlation Spectroscopy. The nanosized sol was embedded in (3-glycidoxipropyl)trimethoxisilane (GPTS) used as a hybrid host for posterior deposition. The opticalparameters of the waveguides such as refractive index, thickness and propagating modes and attenuation coefficient were measured at 632.8. 543.5 and 1550 nm by the prism coupling technique as a function of the Zr02 content. The planar waveguides present thickness of a few microns and support well confined propagating modes. Er doped samples display weak and broad (δλ≈96nm) emission at 1.5 μm.
Resumo:
Erbium activated SiO2 -HfO2 planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-gel method. The films were deposited on v-SiO2 and silica-on-silicon substrates using dip-coating technique. The waveguides show high densification degree, effective intermingling of the two film components, and uniform surface morphology. The waveguide deposited on silica-on-silicon substrates shows one single propagation mode at 1.5μm, with a confinement coefficient of 0.81 and an attenuation coefficient of 0.8 dB/cm at 632.8nm. Emission in the C-telecommunication band was observed at room temperature for all the samples upon continuouswave excitation at 980 nm or 514.5 nm. The shape of the emission band corresponding to the 4I13/2 → 4I15/2 transition is found to be almost independent both on erbium content and excitation wavelength, with a FWHM between 44 and 48 nm. The 4I13/2 level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 - 6.6 ms, depending on the erbium concentration. Infrared to visible upconversion luminescence upon continuous-wave excitation at 980 nm was observed for all the samples. Channel waveguide in rib configuration was obtained by etching the active film in order to have a well confined mode at 1.5 μm.
Resumo:
70SiO2 - 30HfO2 planar waveguides, activated by Er3+ concentration ranging from 0.3 to 1 mol%, were prepared by solgel route, using dip-coating deposition on silica glass substrates. The waveguides showed high densification degree, effective intermingling of the two components of the film, and uniform surface morphology. Propagation losses of about 1 dB/cm were measured at 632.8 nm. When pumped with 987 nm or 514.5 nm continuous-wave laser light, the waveguides showed the 4I 13/2→4I15/2 emission band with a bandwidth of 48 nm. The spectral features were found independent both on erbium content and excitation wavelength. The 4I13/2 level decay curves presented a single exponential profile, with a lifetime between 2.9-5.0 ms, depending on the erbium concentration.
Resumo:
We address the bandgap effect and the thermo-optical response of high-index liquid crystal (LC) infiltrated in photonic crystal fibers (PCF) and in hybrid photonic crystal fibers (HPCF). The PCF and HPCF consist of solid-core microstructured optical fibers with hexagonal lattice of air-holes or holes filled with LC. The HPCF is built from the PCF design by changing its cladding microstructure only in a horizontal central line by including large holes filled with high-index material. The HPCF supports propagating optical modes by two physical effects: the modified total internal reflection (mTIR) and the photonic bandgap (PBG). Nevertheless conventional PCF propagates light by the mTIR effect if holes are filled with low refractive index material or by the bandgap effect if the microstructure of holes is filled with high refractive-index material. The presence of a line of holes with high-index LC determines that low-loss optical propagation only occurs on the bandgap condition. The considered nematic liquid crystal E7 is an anisotropic uniaxial media with large thermo-optic coefficient; consequently temperature changes cause remarkable shifts in the transmission spectrums allowing thermal tunability of the bandgaps. Photonic bandgap guidance and thermally induced changes in the transmission spectrum were numerically investigated by using a computational program based on the beam propagation method. © 2010 SPIE.
Resumo:
We introduce the notion of a PT-symmetric dimer with a chi((2)) nonlinearity. Similarly to the Kerr case, we argue that such a nonlinearity should be accessible in a pair of optical waveguides with quadratic nonlinearity and gain and loss, respectively. An interesting feature of the problem is that because of the two harmonics, there exist in general two distinct gain and loss parameters, different values of which are considered herein. We find a number of traits that appear to be absent in the more standard cubic case. For instance, bifurcations of nonlinear modes from the linear solutions occur in two different ways depending on whether the first-or the second-harmonic amplitude is vanishing in the underlying linear eigenvector. Moreover, a host of interesting bifurcation phenomena appear to occur, including saddle-center and pitchfork bifurcations which our parametric variations elucidate. The existence and stability analysis of the stationary solutions is corroborated by numerical time-evolution simulations exploring the evolution of the different configurations, when unstable.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
HfO2-(3-glycidoxipropil)trimethoxisilane (GPTS) planar waveguides were prepared by a sol-gel route. A stable sol of Hafnia nanocrystals was prepared and characterized by photon correlation spectroscopy and high resolution transmission electron microscopy. The suspension was incorporated in GPTS host and the resulting sol was deposited on borosilicate substrates by the spin coating technique. Optical properties such as refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 632.8, 543.5, and 1550 nm by the prism coupling technique as a function of the HfO2 content. (C) 2000 American Institute of Physics. [S0003-6951(00)03348-9].
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.