4 resultados para online classification
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
During the petroleum well drilling operation many mechanical and hydraulic parameters are monitored by an instrumentation system installed in the rig called a mud-logging system. These sensors, distributed in the rig, monitor different operation parameters such as weight on the hook and drillstring rotation. These measurements are known as mud-logging records and allow the online following of all the drilling process with well monitoring purposes. However, in most of the cases, these data are stored without taking advantage of all their potential. On the other hand, to make use of the mud-logging data, an analysis and interpretationt is required. That is not an easy task because of the large volume of information involved. This paper presents a Support Vector Machine (SVM) used to automatically classify the drilling operation stages through the analysis of some mud-logging parameters. In order to validate the results of SVM technique, it was compared to a classification elaborated by a Petroleum Engineering expert. © 2006 IEEE.
Resumo:
In this paper we would like to shed light the problem of efficiency and effectiveness of image classification in large datasets. As the amount of data to be processed and further classified has increased in the last years, there is a need for faster and more precise pattern recognition algorithms in order to perform online and offline training and classification procedures. We deal here with the problem of moist area classification in radar image in a fast manner. Experimental results using Optimum-Path Forest and its training set pruning algorithm also provided and discussed. © 2011 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
SynopsisBackgroundCellulite refers to skin relief alterations in womens thighs and buttocks, causing dissatisfaction and search for treatment. Its physiopathology is complex and not completely understood. Many therapeutic options have been reported with no scientific evidence about benefits. The majority of the studies are not controlled nor randomized; most efficacy endpoints are subjective, like not well-standardized photographs and investigator opinion. Objective measures could improve severity assessment. Our purpose was to correlate non-invasive instrumental measures and standardized clinical evaluation.MethodsTwenty six women presenting cellulite on buttocks, aged from 25 to 41, were evaluated by: body mass index; standardized photography analysis (10-point severity and 5-point photonumeric scales) by five dermatologists; cutometry and high-frequency ultrasonography (dermal density and dermis/hypodermis interface length). Quality of life impact was assessed. Correlations between clinical and instrumental parameters were performed.ResultsGood agreement among dermatologists and main investigator perceptions was detected. Positive correlations: body mass index and clinical scores; ultrasonographic measures. Negative correlation: cutometry and clinical scores. Quality of life score was correlated to dermal collagen density.ConclusionCellulite caused impact in quality of life. Poor correlation between objective measures and clinical evaluation was detected. Cellulite severity assessment is a challenge, and objective parameters should be optimized for clinical trials.