17 resultados para numerical techniques

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Os modelos de bielas e tirantes são procedimentos de análise apropriados para projetar elementos de concreto armado em casos de regiões onde há alterações geométricas ou concentrações de tensões, denominadas regiões D. Trata-se de bons modelos de representação da estrutura para avaliar melhor o seu comportamento estrutural e seu mecanismo resistente. O presente artigo aplica a técnica da otimização topológica para identificar o fluxo de tensões nas estruturas, definindo a configuração dos membros de bielas e tirantes, e quantifica seus valores para dimensionamento. Utilizam-se o método ESO, e uma variante desse, o SESO (Smoothing ESO) com o método dos elementos finitos em elasticidade plana. A filosofia do SESO baseia-se na observação de que se o elemento não for necessário à estrutura, sua contribuição de rigidez vai diminuindo progressivamente. Isto é, sua remoção é atenuada nos valores da matriz constitutiva, como se este estivesse em processo de danificação. Para validar a presente formulação, apresentam-se alguns exemplos numéricos onde se comparam suas respostas com as advindas de trabalhos científicos pioneiros sobre o assunto.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This is an introductory course to the Lanczos Method and Density Matrix Renormalization Group Algorithms (DMRG), two among the leading numerical techniques applied in studies of low-dimensional quantum models. The idea of studying the models on clusters of a finite size in order to extract their physical properties is briefly discussed. The important role played by the model symmetries is also examined. Special emphasis is given to the DMRG.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we present a finite difference MAC-type approach for solving three-dimensional viscoelastic incompressible free surface flows governed by the eXtended Pom-Pom (XPP) model, considering a wide range of parameters. The numerical formulation presented in this work is an extension to three-dimensions of our implicit technique [Journal of Non-Newtonian Fluid Mechanics 166 (2011) 165-179] for solving two-dimensional viscoelastic free surface flows. To enhance the stability of the numerical method, we employ a combination of the projection method with an implicit technique for treating the pressure on the free surfaces. The differential constitutive equation of the fluid is solved using a second-order Runge-Kutta scheme. The numerical technique is validated by performing a mesh refinement study on a pipe flow, and the numerical results presented include the simulation of two complex viscoelastic free surface flows: extrudate-swell problem and jet buckling phenomenon. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, by using the Poincare compactification in R(3) we make a global analysis of the Lorenz system, including the complete description of its dynamic behavior on the sphere at infinity. Combining analytical and numerical techniques we show that for the parameter value b = 0 the system presents an infinite set of singularly degenerate heteroclinic cycles, which consist of invariant sets formed by a line of equilibria together with heteroclinic orbits connecting two of the equilibria. The dynamical consequences related to the existence of such cycles are discussed. In particular a possibly new mechanism behind the creation of Lorenz-like chaotic attractors, consisting of the change in the stability index of the saddle at the origin as the parameter b crosses the null value, is proposed. Based on the knowledge of this mechanism we have numerically found chaotic attractors for the Lorenz system in the case of small b > 0, so nearby the singularly degenerate heteroclinic cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Migration of components from plastic packaging into foodstuffs or into medicines is a very important issue, concerning public health. Using experimental techniques, like gas chromatography-mass spectrometry, these essays measure total migration and specific migration of components from plastic packaging. This work presents an explanation and applications of a numerical technique tool for this measurement, allowing the comprehension of the diffusion process and the estimate of component migration in difficult or impractical measurements. As an application example, the non-uniform influence of initial concentration profile on the migration is presented, demonstrating the necessity of this profile determination for high quality considerations on involved metrology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morphing aircraft have the ability to actively adapt and change their shape to achieve different missions efficiently. The development of morphing structures is deeply related with the ability to model precisely different designs in order to evaluate its characteristics. This paper addresses the dynamic modeling of a sectioned wing profile (morphing airfoil) connected by rotational joints (hinges). In this proposal, a pair of shape memory alloy (SMA) wires are connected to subsequent sections providing torque by reducing its length (changing airfoil camber). The dynamic model of the structure is presented for one pair of sections considering the system with one degree of freedom. The motion equations are solved using numerical techniques due the nonlinearities of the model. The numerical results are compared with experimental data and a discussion of how good this approach captures the physical phenomena associated with this problem. © The Society for Experimental Mechanics, Inc. 2012.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The strut-and-tie models are widely used in certain types of structural elements in reinforced concrete and in regions with complexity of the stress state, called regions D, where the distribution of deformations in the cross section is not linear. This paper introduces a numerical technique to determine the strut-and-tie models using a variant of the classical Evolutionary Structural Optimization, which is called Smooth Evolutionary Structural Optimization. The basic idea of this technique is to identify the numerical flow of stresses generated in the structure, setting out in more technical and rational members of strut-and-tie, and to quantify their value for future structural design. This paper presents an index performance based on the evolutionary topology optimization method for automatically generating optimal strut-and-tie models in reinforced concrete structures with stress constraints. In the proposed approach, the element with the lowest Von Mises stress is calculated for element removal, while a performance index is used to monitor the evolutionary optimization process. Thus, a comparative analysis of the strut-and-tie models for beams is proposed with the presentation of examples from the literature that demonstrates the efficiency of this formulation. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given the importance of preserving the water quality of the Guarani Aquifer, the work done in the hydrographic basin of the rivers Jacaré-Guaçú e Jacaré-Pepira, located in the central-northern São Paulo state, was made to map the hydraulic conductivity from the use of some empirical methods associated with granulometric analysis and in situ testing, specifically with the Guelph permeameter. All results were submitted to a correlation analysis and subsequently mapped using the methodology of minimum curvature, based on numerical techniques Spline. These procedures provide for studies of aquifer vulnerability and assist in decision making in environmental projects and guidelines for urban planning

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective:This study investigated the efficacy of different techniques for the union of fragments of a denture before repair and on the accuracy of the reposition.Materials and methods:For this study, 20 maxillary dentures made with Lucitone 550 heat-cured resin were used. Points were determined with a scanner on the cusp of the teeth, as a measurement of the segments. After digitisation, each model was exported to the AUTOCAD R 14 program and two-dimensional measurements of the distances between the marked points were made. After the initial analysis, the dentures were fractured into two segments using an impact test machine. For the repair, maxillary dentures were divided into two groups; in the first, the repair was carried out using Kerr's sticky wax and in the second group, Super Bonder was used to join the fragments, with subsequent inclusion of DENTSPLY((R)) Repair Material resin. After the repair, the points of the maxillary dentures were measured again. The numerical values obtained were tabulated to compare the measurements before fracture and after the repair. For statistical analysis, analysis of variance was employed, using a single factor and double factor, followed by the Tukey test with a reliability of 95%.Results:The results demonstrated a statistically significant difference between the materials used to join the dentures for repair, where the dentures were joined with sticky wax presented a larger variation in the distances between the points.Conclusion:The variation in distances between the points is influenced by the agent of repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We suggest a method for constructing trial eigenfunctions for excited states to be used in the variational method. This method is a generalization of the one that uses a superpotential to obtain the trial functions for the ground state. The construction of an effective hierarchy of Hamiltonians is used to determine excited variational energies. The first four eigenvalues for a quartic double-well potential are calculated for several values of the potential parameter. The results are in very good agreement with the eigenvalues obtained by numerical integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flutter is an in-flight vibration of flexible structures caused by energy in the airstream absorbed by the lifting surface. This aeroelastic phenomenon is a problem of considerable interest in the aeronautic industry, because flutter is a potentially destructive instability resulting from an interaction between aerodynamic, inertial, and elastic forces. To overcome this effect, it is possible to use passive or active methodologies, but passive control adds mass to the structure and it is, therefore, undesirable. Thus, in this paper, the goal is to use linear matrix inequalities (LMIs) techniques to design an active state-feedback control to suppress flutter. Due to unmeasurable aerodynamic-lag states, one needs to use a dynamic observer. So, LMIs also were applied to design a state-estimator. The simulated model, consists of a classical flat plate in a two-dimensional flow. Two regulators were designed, the first one is a non-robust design for parametric variation and the second one is a robust control design, both designed by using LMIs. The parametric uncertainties are modeled through polytopic uncertainties. The paper concludes with numerical simulations for each controller. The open-loop and closed-loop responses are also compared and the results show the flutter suppression. The perfomance for both controllers are compared and discussed. Copyright © 2006 by ABCM.