28 resultados para non violen action
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We consider the minimal chiral Schwinger model, by embedding the gauge non-invariant formulation into a gauge theory following the Batalin-Fradkin-Fradkina-Tyutin point of view. Within the BFFT procedure, the second-class constraints are converted into strongly involutive first-class ones, leading to an extended gauge-invariant formulation. We also show that, like the standard chiral model, in the minimal chiral model the Wess-Zumino action can be obtained by performing a q-number gauge transformation into the effective gauge non-invariant action.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Polyphenols with Antiulcerogenic Action from Aqueous Decoction of Mango Leaves (Mangifera indica L.)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
By introducing an appropriate parent action and considering a perturbative approach, we establish, up to fourth order terms in the field and for the full range of the coupling constant, the equivalence between the non-commutative Yang-Mills-ChernSimons theory and the non-commutative, non-Abelian self-dual model. In doing this, we consider two different approaches by using both the Moyal star-product and the Seiberg-Witten map. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
We compute an effective action for a composite Higgs boson formed by new fermions belonging to a general technicolor non-Abelian gauge theory, using a quite general expression for the fermionic self-energy that depends on a certain parameter (alpha), that defines the technicolor theory from the extreme walking behavior up to the one with a standard operator product expansion behavior. We discuss the values of the trilinear and quadrilinear scalar couplings. Our calculation spans all the possible physical possibilities for mass and couplings of the composite system. In the case of extreme walking technicolor theories we verify that it is possible to have a composite Higgs boson with a mass as light as the present experimental limit, contrary to the usual expectation of a heavy mass for the composite Higgs boson. In this case we obtain an upper limit for the Higgs boson mass, (M(H)<= O(700) GeV for SU(2)(TC)), and the experimental data on the Higgs boson mass constrain SU(N)(TC) technicolor gauge groups to be smaller than SU(10)(TC).
Resumo:
It is of major importance to consider non-ideal energy sources in engineering problems. They act on an oscillating system and at the same time experience a reciprocal action from the system. Here, a non-ideal system is studied. In this system, the interaction between source energy and motion is accomplished through a special kind of friction. Results about the stability and instability of the equilibrium point of this system are obtained. Moreover, its bifurcation curves are determined. Hopf bifurcations are found in the set of parameters of the oscillating system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties of a particle suffering the action of a generic drag force are obtained for a dissipative Fermi Acceleration model. The dissipation is introduced via a viscous drag force, like a gas, and is assumed to be proportional to a power of the velocity: F alpha -nu(gamma). The dynamics is described by a two-dimensional nonlinear area-contracting mapping obtained via the solution of Newton's second law of motion. We prove analytically that the decay of high energy is given by a continued fraction which recovers the following expressions: (i) linear for gamma = 1; (ii) exponential for gamma = 2; and (iii) second-degree polynomial type for gamma = 1.5. Our results are discussed for both the complete version and the simplified version. The procedure used in the present paper can be extended to many different kinds of system, including a class of billiards problems.
Resumo:
Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of theta's.
Resumo:
In this work we intend to study a class of time-dependent quantum systems with non-Hermitian Hamiltonians, particularly those whose Hermitian counterparts are important for the comprehension of posed problems in quantum optics and quantum chemistry. They consist of an oscillator with time-dependent mass and frequency under the action of a time-dependent imaginary potential. The wave functions are used to obtain the expectation value of the Hamiltonian. Although it is neither Hermitian nor PT symmetric, the Hamiltonian under study exhibits real values of energy.