97 resultados para nitrogen adsorption isotherm

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r(w)) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from similar to2.1 to similar to2.4 and mass-fractal correlation length xi diminishing from similar to13 nm to similar to2 nm, as r(w) is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500degreesC, in general, increases the mass-fractal dimension D, diminishes the characteristic length xi of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as similar to2.4 and similar to2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the secondary particle developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from similar to2.4 to similar to2.0 and from similar to2.7 to similar to2.5, respectively, as the aerogel bulk density increases from 0.25 (r(w)=66) up to 0.91 g/cm(3) (r(w)=6).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and nitrogen adsorption techniques were used to study the temperature and time structural evolution of the nanoporosity in silica xerogels prepared from acid- and ultrasound-catalyzed hydrolysis of tetraetboxysilane (TEOS). Silica xerogels present a structure of nanopores of fully random shape, size, and distribution, which can be described by an exponential correlation function gamma(r) = exp (-r/a), where a is the correlation distance, as predicted by the Debye, Anderson, and Brumberger (DAB) model. The mean pore size was evaluated as about 1.25 nm from SAXS and about 1.9 nm from nitrogen adsorption. The nanopore elimination in TEOS sonohydrolysis-derived silica xerogels is readily accelerated at temperatures around 900 degrees C probably by the action of a viscous flow mechanism. The nanopore elimination process takes place in such a way that the pore volume fraction and the specific surface are reduced while the mean pore size remains constant. (c) 2005 WILEY-VCH Verlag GmbH S Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative study using small-angle x-ray scattering (SAXS) and nitrogen adsorption has been carried out in the structural characterization of silica xerogels and aerogels, obtained from tetraethoxysilane sonohydrolysis. The specific surface and the mean pore size as measured by both the techniques were found to be in notable agreement in all cases for aerogels and xerogels. According to the SAXS data, aerogels at 500 °C exhibit a mass fractal structure with fractal dimension D∼2.4 in the range between the correlation length ξ∼5.3 nm and a∼0.75 nm. An experimental method to probe the mass fractal structure of aerogels from exclusively nitrogen adsorption isotherms has been presented. For aerogels at 500 °C, we have found D∼2.4 in the range between the pore width 2rξ∼33 nm and 2ra∼4.5 nm, which is in notable agreement with the SAXS results (D ∼2.4, ξ∼5.3 nm, a∼0.75 nm) if we assign the pore width 2r probed by the Kelvin equation in the adsorption method to the Bragg distance 2π/q associated to the correlation length 1/q probed by SAXS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution during sintering of compacted SnO2 sol-gel powder was investigated using nitrogen adsorption isotherm analysis. Results show that for sintering temperatures up to 400°C the samples have a fractal pore size distribution. As the sintering temperature increases, a structural rearragement occurs, allowing an increase of the efficiency of particle packing and the reduction of fractality. Above 400°C, the pore size growth associated with grain coalescence is the main structural change observed as the sintering temperature increases. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of gas sensors with innovative designs and advanced functional materials has attracted considerable scientific interest given their potential for addressing important technological challenges. This work presents new insight towards the development of high-performance p-type semiconductor gas sensors. Gas sensor test devices, based on copper (II) oxide (CuO) with innovative and unique designs (urchin-like, fiber-like, and nanorods), are prepared by a microwave-assisted synthesis method. The crystalline composition, surface area, porosity, and morphological characteristics are studied by X-ray powder diffraction, nitrogen adsorption isotherms, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Gas sensor measurements, performed simultaneously on multiple samples, show that morphology can have a substantial influence on gas sensor performance. An assembly of urchin-like structures is found to be most effective for hydrogen detection in the range of parts-per-million at 200 °C with 300-fold larger response than the previously best reported values for semiconducting CuO hydrogen gas sensors. These results show that morphology plays an important role in the gas sensing performance of CuO and can be effectively applied in the further development of gas sensors based on p-type semiconductors. High-performance gas sensors based on CuO hierarchical morphologies with in situ gas sensor comparison are reported. Urchin-like morphologies with high hydrogen sensitivity and selectivity that show chemical and thermal stability and low temperature operation are analyzed. The role of morphological influences in p-type gas sensor materials is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple hybrid synthesis processing method was developed to synthesize γ-MnO2 nanocrystalline particles. The polyol method was modified by the addition of nitric acid in order to allow the synthesizing of single-phase Mn3O4 in a large scale. In the sequence, the acid digestion technique was used to transform Mn3O4 into γ-MnO2. Structural and morphological characterization was carried out by X-ray diffractometry, Infrared and Raman spectroscopy, thermogravimetric analysis, nitrogen adsorption isotherm, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The synthesized material exhibits a specific capacitance of 125.1 F g-1 at a mass loading of 0.98 mg cm-2. The relation between structural features and electrochemical activity is discussed by comparing the synthesized material with commercial electrolytic manganese dioxide. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Boron adsorption by soil is the main phenomenon that affects its availability to plants. This, the present study investigated the effect of liming on B adsorption by lowland soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples of three lowland soils [Gleissolo Haplico (GX), Plintossolo Haplico (FX) and Cambissolo Haplico (CX)], with different origin material and physicochemical properties were used. Samples with or without liming application were incubated during 60 days. Boron adsorption was accomplished by shaking 4.0g soil samples, for 24 h, with 20 mL of 0.01 mol L-1 CaCl2 solution containing different concentrations of B (0, 1, 2, 4, 8 and 16 mg L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. The adsorption isotherms indicated that the B adsorption increased with its increasing concentration in the equilibrium solution. Maximum adsorption capacity of B ranged from 3.0 to 13.9 mg kg(-1) (without liming) and 14.7 to 35.7 mg kg(-1) (with liming). Liming increased the amount of adsorbed B in Gleissolo Haplico and Plintossolo Haplico soils, although the bonding energy has decreased. The amount of adsorbed B by Cambissolo Haplico soil was not affected by liming application. The most important soil properties affecting the B adsorption in lowland soils were pH, clay content, exchangeable aluminum and iron oxide contents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Temporary B deficiency can be triggered by liming of acid soils because of increased B adsorption at higher soil pH. Plants respond directly to the activity of B in soil solution and only indirectly to B adsorbed on soil constituents. Because the range between deficient and toxic B concentration is relatively narrow, this poses difficulty in maintaining appropriate B levels in soil solution. Thus, knowledge of the chemical behavior of B in the soil is particularly important. The present study investigated the effect of soil pH on B adsorption in four soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples were taken from a Rhodic Hapludox, Arenic Hapludalf, Arenic Hapludult, and one Typic Usthorthent. To evaluate the effect of pH on B adsorption, subsamples soil received the application of increasing rates of calcium carbonate. Boron adsorption was accomplished by shaking 2.0 g soil, for 24 h, with 20 mL of 0.01 mol L-1 NaCl solution containing different concentrations (0.0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, and 4.0 mg B L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. Boron adsorption increased as concentration increased. Boron adsorption was dependent on soil pH, increasing as a function of pH in the range between 4.6 and 7.4, although the bonding energy has decreased. Maximum adsorption capacity (MAC) of B was observed in the Arenic Hapludalf (49.8 mg B kg(-1) soil) followed by Arenic Hapludult (22.5 mg kg(-1)), Rhodic Hapludox (17.4 mg kg(-1)), and Typic Usthorthent (7.0 mg kg(-1)). The organic matter content, clay content, and aluminum oxide content (Al2O3) were the soils properties that affecting the B adsorption on Parana soils.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silica wet gels were prepared from acid sonohydrolysis of tetraethoxysilane (TEOS) and additions of poly(vinyl alcohol) (PVA)-water solution. Aerogels were obtained from supercritical CO(2) extraction. The samples were studied by thermal gravimetric (TG) analysis, small-angle X-ray scattering (SAXS), and nitrogen adsorption. The structure of wet gels can be described as a mass fractal with dimension D equal to 2.0 on the whole length scale experimentally probed by SAXS, from similar to 0.3 to similar to 15 nm. Pure and low-PVA-addition wet gels exhibit an upper cutoff accounting for a finite characteristic length xi of the mass fractal structure. Additions , of PVA increase without modifying D, which was attributed to a steric effect of the polymer in the structure. The pore volume fraction of the aerogels diminishes typically about 11% with respect to that of the wet gels, although nitrogen adsorption could be underestimating some porosity. The pore size distribution of the aerogels is shifted toward the mesopore region with the additions of PVA, in a straight relationship with the increase of xi in the wet gels. The thermal stability of the pore size distribution of the aerogels was studied up to 1000 degrees C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sonohydrolysis of mixtures of tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS) with different TMOS/(TMOS + TEOS) molar ratio R was carried out to obtain similar to 2.0 x 10(-3) mol SiO2/cm(3) and similar to 86%-volume liquid phase wet gels. Aerogels were obtained by supercritical CO2 extraction in autoclave. The samples were analyzed by small-angle X-ray scattering (SAXS) and nitrogen adsorption. The structure of the wet gels can be described as a mass fractal structure with fractal dimension D similar to 2.2 and characteristic length increasing from similar to 4.6 nm for pure TEOS to similar to 6.4 nm for pure TMOS. A fraction of the porosity is eliminated with the supercritical process. The fundamental role of the TMOS/(TMOS + TEOS) molar ratio on the structure of the aerogels is to increase the porosity and the pore mean size as R changes from pure TEOS to pure TMOS. The supercritical process increases the mass fractal dimension and shortens the fractality domain in the mesopore region. A secondary structure appearing in the micropore region of the aerogels can be described as a mass/surface fractal structure with correlated mass fractal dimension D-m similar to 2.6 and surface fractal dimension D-s similar to 2.3. (C) 2007 Elsevier B.V. All rights reserved.