33 resultados para nitrate nitrogen

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well established that nitrate is a potent inhibitor of nodulation and nitrogen fixation in legumes. The objective of this study was to demonstrate the relative insensitivity of these processes to nitrate with Calopogonium mucunoides, a tropical South American perennial legume, native to the cerrado (savannah) region. It was found that nodule number was reduced by about half in the presence of high levels of nitrate (15 mM) but nodule growth (total nodule mass per plant) and nitrogen fixation (acetylene reduction activity and xylem sap ureide levels) were not affected. Other sources of N (ammonium and urea) were also without effect at these concentrations. At even higher concentrations (30 mM), nitrate did promote significant inhibition (ca. 50%) of acetylene reduction activity, but no significant reduction in xylem sap ureides was found. The extraordinary insensitivity of nodulation and N2 fixation of C. mucunoides to nitrate suggests that this species should be useful in studies aimed at elucidating the mechanisms of nitrate inhibition of these processes. © 2010 Springer Science+Business Media B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Winter cover crops can affect N nutrition of the following maize crop. Although legumes have been recommend for maize rotations, in tropical areas grasses may be more interesting because they provide a longer protection of soil surface. Legumes can add N to the system and grasses can compete with maize for the available nutrient. An experiment was conducted in Botucatu, São Paulo State, Brazil, to study N dynamics in the soil surface straw-maize system as affected by N fertilization management and species included in the no-till rotation. Treatments were fallow, black oat (Avena strigosa), pearl millet (Pennisetum glaucum), white lupins (Lupinus albus), black oat fertilized with N. and pearl millet fertilized with N. Maize was grown afterwards in the same plots, receiving 0.0, 60.0 and 120.0 kg ha(-1) of N sidedressed 30 days after plant emergence. Soil, straw and maize samples were taken periodically. The highest corn yields were observed when it was cropped after pearl millet fertilized with N. Nitrogen side dressed application up to 120 kg ha(-1) was not able to avoid corn yield decrease caused by black oat. Grasses can be recommended in maize rotations in tropical areas, provided they receive nitrogen fertilizer and show no allelopathy. Due to its higher ON ratio and dry matter yield they are better than legumes, protecting the soil surface for a longer period. Pearl millet is particularly interesting because it enhances N use efficiency by the following maize crop. For a better N availability/demand synchronism, the cover crops should be desiccated right before maize planting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O processo de nitrificação pode conduzir a perdas substanciais do nitrogênio aplicado por meio da lixiviação de nitrato e emissão de N2O. A regulação da nitrificação pode ser uma estratégia para melhorar a recuperação do N e aumentar sua eficiência agronômica. O objetivo deste trabalho foi avaliar a habilidade de espécies do gênero Brachiaria de inibir o processo de nitrificação no solo. O experimento foi realizado em casa de vegetação, em vasos contendo 10 dm³ de um Latossolo Vermelho. Os tratamentos foram constituídos do cultivo de três espécies forrageiras (Brachiaria brizantha, B. ruziziensis e B. decumbens) e quatro doses de N (0, 100, 200 e 300 mg/vaso), além da testemunha (sem a presença das forrageiras). Na ausência do cultivo de forrageiras, todos os níveis de adubação nitrogenada proporcionaram maior teor de N-NO3- no solo, reflexo da nitrificação. A mineralização da matéria orgânica supriu boa parte da necessidade de absorção de N pelas forrageiras estudadas, e a B. brizantha alterou a nitrificação em sua rizosfera, no entanto esse efeito não foi de magnitude suficiente para alterar o teor de N-NH4+ presente no volume total de solo do vaso.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After harvest, sugarcane residues left on the soil surface can alter nitrogen (N) dynamics in the plant-soil system. In Oxisols, the nitrogen fertilizer applied had its effects on the levels of ammonium and nitrate in the soil, N concentration in the plant leaves, and on the growth and productivity of second ratoon plants. The N rates tested were of 0, 60, 120, 180, and 240 kg ha-1. Each treatment was replicated four times. Four months after the experiment was started, ammonium and nitrate concentration in the soil, N levels in plant leaves, and plant growth were evaluated. Productivity was evaluated 11 months after the experiment was set. By increasing the content of mineral N in soil, plant growth variables reflected differences in the production of stems; however, it did not affect foliar N. The use of leaf analysis was not important to assess the nutritional status of nitrogen in the ratoon sugarcane. Nitrogen concentration in soil was affected by nitrogen fertilization, but not the N content in leaves. The rate of 138 kg N ha-1enabled greater production of sugarcane stalks (140 t ha-1). © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possibility of using yeast from alcohol distilleries as a source of nutrients in soil was investigated. The following treatments were used: no fertilization (control), 0.5% (w/w) yeast, 1% (w/w) yeast, and NPK. The decomposition of yeast was monitored for 90 days in two soils. The CO, production and the microbial biomass were increased by art average of 1- to 3-fold by yeast incorporation compared to control. Protease activity also was enhanced 3- to 8-fold in the soils supplemented with yeast compared to control. The phosphatase activities were higher than control only during the first days. While nitrate contents increased in all treatments compared to control, available P only increased in the soils amended with 1%, yeast or NPK by 45-119% and 309-489%, respectively. These results indicate that there exists an excellent potential for the use of yeast in the soil as a source of nitrate and available P for plant nutrition. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O empirismo no uso das soluções nutritivas é freqüente. Muitas vezes a mesma solução nutritiva é usada para diferentes espécies baseando-se apenas em semelhanças morfológicas. No entanto esta situação pode proporcionar desequilíbrio nutricional prejudicando tanto a produção quanto a qualidade do produto face o acúmulo de nitrato. Foi conduzido um trabalho em sistema hidropônico - NFT, com o objetivo de avaliar o efeito da concentração de nitrogênio na solução nutritiva na produção, nos teores de nutrientes e de nitrato em folhas de rúcula (Eruca sativa). O trabalho foi conduzido na primavera de 2003. Foram avaliadas quatro concentrações de nitrogênio na solução nutritiva (60,8; 121,6; 182,5; 243,5 mg L-1) e três cultivares de rúcula (Cultivada, Folha Larga e Selvática), sob delineamento de blocos ao acaso, fatorial 4 x 3, com quatro repetições. A cv. Cultivada apresentou maior estatura e fitomassa fresca de folhas, não diferindo da 'Folha Larga' quanto a número de folhas, teor de nitrato nas folhas e fitomassa seca e fresca da raiz. Houve incremento de NO3-, N, Ca e P e diminuição de Mg, K e S com o aumento da concentração de N na solução nutritiva. O cultivo da cv. Cultivada na concentração de 93 mg L-1 é a mais recomendada em função da maior produtividade e baixo teor de nitrato.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crop species with the C-4 photosynthetic pathway are more efficient in assimilating N than C-3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C-4 photosynthetic pathway, and black oat (Arena Strigosa) and triticale (X Triticosecale), with the C-3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha(-1) of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C-4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C-4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cation mobility in acidic soils with low organic-matter contents depends not only on sorption intensity but also on the solubility of the species present in soil solution. In general, the following leaching gradient is observed: potassium (K+) magnesium (Mg2+) calcium (Ca2+) aluminum (Al3+). To minimize nutrient losses and ameliorate the subsoil, soil solution must be changed, favoring higher mobility of M2+ (metal ions) forms. This would be theoretically possible if plant residues were kept on the soil surface. An experiment was conducted in pots containing a Distroferric Red Latosol, with soil solution extractors installed at two depths. Pearl millet, black oat, and oilseed radish residues were laid on the soil surface, and nitrogen (as ammonium nitrate) was applied at rates ranging from 0 to 150mgkg-1. Corn was grown for 52 days. Except for K+ and ammonium (NH4 +), nitrogen rates and plant residues had little effect upon the concentrations and forms of the elements in the soil solution. Presence of cover crop residues on soil surface decreased the effect of nitrogen fertilizer on Ca leaching. More than 90% of the Ca2+, Mg2+, and K+ were found as free ions. The Al3+ was almost totally complexed as Al(OH3)0. Nitrogen application increased the concentrations of almost all the ions in soil solution, including Al3+, although there was no modification in the leaching gradient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both N excess and deficiency may affect cotton yield and quality. It would therefore be useful to base the N management fertilization on the monitoring of the nutritional status. This study investigated the correlations among the following determination methods of the N nutritional status of cotton (Gossypium hirsutum L., var. Latifolia): chlorophyll readings (SPAD-502 (R), Minolta), specific-ion nitrate meter (Nitrate Meter C-141, Horiba-Cardy (R)), and laboratory analysis (conventional foliar diagnosis). Samples were taken weekly from two weeks before flowering to the fifth week after the first flower. The experiment was conducted on the Fazenda Santa Tereza, Itapeva, State of São Paulo, Brazil. The crop was fertilized with 40 kg ha(-1) N at planting and 0, 30, 60, 90, and 120 kg ha(-1) of side-dressed N. The range of leaf N contents reported as adequate for samples taken 80-90 days after plant emergence (traditional foliar diagnosis) may be used as reference from the beginning of flowering when the plant is not stressed. Specific-ion nitrate meter readings can be used as a nutritional indicator of cotton nutrition from one week after pinhead until the third week of flowering. In this case, plants are well-nourished when readings exceed 8,000 mg L(-1) NO(3)(-). The chlorophyll meter can also be used to estimate the nutritional status of cotton from the third week of flowering. In this case the readings should be above 48 in well-nourished plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of nitrogen availability on growth and photosynthesis were followed in plants of sunflower (Helianthus annuus L., var. CATISSOL-01) grown in the greenhouse under natural photoperiod. The sunflower plants were grown in vermiculite under two contrasting nitrogen supply, with nitrogen supplied as ammonium nitrate. Higher nitrogen concentration resulted in higher shoot dry matter production per plant and the effect was apparent from 29 days after sowing (DAS). The difference in dry matter production was mainly attributed to the effect of nitrogen on leaf production and on individual leaf dry matter. The specific leaf weight (SLW) was not affected by the nitrogen supply. The photosynthetic CO2 assimilation (A) of the target leaves was remarkably improved by high nitrogen nutrition. However, irrespective of nitrogen supply, the decline in photosynthetic CO2 assimilation occurred before the end of leaf growth. Although nitrogen did not change significantly stomatal conductance (gs), high-N grown plants had lower intercellular CO2 concentration (C-i) when compared with low-N grown plants. Transpiration rate (E) was increased in high-N grown plants only at the beginning of leaf growth. However, this not resulted in lower intrinsic water use efficiency (WUE). (C) 2004 Elsevier B.V.. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potassium (K) is required in high doses by the banana (Musa sp.) plant and interacts with other nutrient elements in which banana tissues are maintained under in vitro condition as a consequence modifications in the plant metabolism take place mainly in nitrogen (N) compounds, such as proteins, amino acids, and secondary compounds. When K is present in concentrations lower than that required, diamines such as putrescine and poliamines are formed. This metabolic disorder can also be correlated with the presence of different inorganic N forms, such as nitrate (NO3) and ammonium (NH4), and the ratios between both ions as well. In order to follow the physiological performance of the interrelationships, K/putrescine and of the NO3/NH4 ratio in the tissue of banana vitroplantlets, shoot apex of two banana cvs. Nanica and Prata Ana were maintained in modified MS medium in the presence of six different doses of K: 5, 10, 15, 20, 25, and 30 mM. After the period of tissue proliferation the cultures were transferred to rooting media containing the same different K doses. Dry matter, K, putrescine, and spermidine contents and their accumulation were determined in the shoots and roots of the vitroplantlets and in the shoot apex of the explant donor cultivar as well as the corresponding values for the whole vitroplantlets calculated. The data were statistically analyzed. The contents and accumulations of putrescine and spermidine in banana tissues were enhanced as K concentration decreased in the medium: four times (0.19% of the dry matter) for cv. Nanica and eight times (0.25% of the dry matter) for cv. Prata Ana. This behavior was not only related to the K depletion but to the NO3/NH4 ratio as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)