32 resultados para neuronal tracers

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cochlear root neurons (CRNs) are involved in the acoustic startle reflex, which is widely used in behavioral models of sensorimotor integration. A short-latency component of this reflex, the auricular reflex, promotes pinna movements in response to unexpected loud sounds. However, the pathway involved in the auricular component of the startle reflex is not well understood. We hypothesized that the auricular reflex is mediated by direct and indirect inputs from CRNs to the motoneurons responsible for pinna movement, which are located in the medial subnucleus of the facial motor nucleus (Mot7). To assess whether there is a direct connection between CRNs and auricular motoneurons in the rat, two neuronal tracers were used in conjunction: biotinylated dextran amine, which was injected into the cochlear nerve root, and Fluoro-Gold, which was injected into the levator auris longus muscle. Under light microscopy, close appositions were observed between axon terminals of CRNs and auricular motoneurons. The presence of direct synaptic contact was confirmed at the ultrastructural level. To confirm the indirect connection, biotinylated dextran amine was injected into the auditory-responsive portion of the caudal pontine reticular nucleus, which receives direct input from CRNs. The results confirm that the caudal pontine reticular nucleus also targets the Mot7 and that its terminals are concentrated in the medial subnucleus. Therefore, it is likely that CRNs innervate auricular motoneurons both directly and indirectly, suggesting that these connections participate in the rapid auricular reflex that accompanies the acoustic startle reflex. © 2008 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous functions have been attributed to the Edinger-Westphal nucleus (EW), including those related to feeding behavior, pain control, alcohol consumption and the stress response. The EW is thought to consist of two parts: one controls accommodation, choroidal blood flow and pupillary constriction, primarily comprising cholinergic cells and projecting to the ciliary ganglion; and the other would be involved in the non-ocular functions mentioned above, comprising peptide-producing neurons and projecting to the brainstem, spinal cord and prosencephalic regions. Despite the fact that the EW is well known, its connections have yet to be described in detail. The aim of this work was to produce a map of the hypothalamic sources of afferents to the EW in the rat. We injected the retrograde tracer Fluoro-Gold into the EW, and using biotinylated dextran amine, injected into afferent sources as the anterograde control. We found retrogradely labeled cells in the following regions: subfornical organ, paraventricular hypothalamic nucleus, arcuate nucleus, lateral hypothalamic area, zona incerta, posterior hypothalamic nucleus, medial vestibular nucleus and cerebellar interpositus nucleus. After injecting BDA into the paraventricular hypothalamic nucleus, lateral hypothalamic area and posterior hypothalamic nucleus, we found anterogradely labeled fibers in close apposition to and potential synaptic contact with urocortin 1-immunoreactive cells in the EW. On the basis of our findings, we can suggest that the connections between the EW and the hypothalamic nuclei are involved in controlling stress responses and feeding behavior. © 2013 The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 the actions of the alpha(1)-adrenoceptor antagonist indoramin have been examined against the contractions induced by noradrenaline in the rat vas deferens and aorta taking into account a putative neuronal uptake blocking activity of this antagonist which could. result in self-cancelling actions.2 Indoramin behaved as a simple competitive antagonist of the contractions induced by noradrenaline in the vas deferens and aorta yielding pA(2) values of 7.38 +/- 0.05 (slope = 0.98 +/- 0.03) and 6.78 +/- 0.14 (slope = 1.08 +/- 0.06), respectively.3 When the experiments were repeated in the presence of cocaine (6 mu M) the potency (pA(2)) of indoramin in antagonizing the contractions of the vas deferens to noradrenaline was increased to 8.72 +/- 0.07 (slope = 1.10 +/- 0.05) while its potency remained unchanged in the aorta (pA(2) = 6.69 +/- 0.12; slope = 1.04 +/- 0.05).4 In denervated vas deferens, indoramin antagonized the contractions to noradrenaline with a potency similar to that found in the presence of cocaine (8.79 +/- 0.07; slope = 1.09 +/- 0.06).5 It is suggested that indoramin blocks alpha(1)-adrenoceptors and neuronal uptake in rat vas deferens resulting in Schild plots with slopes not different from unity even in the absence of selective inhibition of neuronal uptake. As a major consequence of this double mechanism of action, the pA(2) values for this antagonist are underestimated when calculated in situations where the neuronal uptake is active, yielding spurious pK(B) values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As substâncias traçadoras são usadas para avaliar a eficácia de pulverizações mas, normalmente, elas modificam a tensão superficial de soluções aquosas. O trabalho objetivou definir um método para avaliar a distribuição e a quantidade de produto depositada em pulverizações, utilizando-se substâncias traçadoras, com a possibilidade de ajustar a tensão superficial da calda. Foram testados os produtos Azul Brilhante a 0,15%, Saturn Yellow a 0,15% suspenso em lignosulfonato Vixilperse a 0,015% e a Fluoresceína Sódica a 0,005%, e as misturas de Azul Brilhante mais Saturn Yellow e Azul Brilhante mais Fluoresceína, nas mesmas concentrações. Para avaliar a degradação as soluções com os produtos foram depositados sobre folhas de citros e avaliados as quantidades através da leitura de unidade de fluorescência e densidade óptica, das soluções sem secar, secas no escuro, exposta ao sol por 2, 4 e 8 horas e comparadas com as leituras obtidas com os depósitos direto em água. A tensão superficial da solução traçadora foi determinada pela passagem de gotas formadas no período entre 20 e 40 segundos. A mistura do Azul Brilhante mais o Saturn Yellow a 0,15%, não apresentou degradação em todas as condições de avaliação, não foi absorvida pelas folhas e manteve a solução na mesma tensão superficial da água, possibilitando ajustá-la aos mesmos níveis das concentrações dos produtos fitossanitários. Isto proporcionou o estabelecimento de um método qualitativo pela avaliação visual sobre luz ultravioleta da distribuição do pigmento e quantitativo com a determinação da quantidade depositada do corante numa mesma solução, em diferentes tensões superficiais na calda de pulverização.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pompilidotoxins (PMTXs), derived from the venom of solitary wasp has been known to facilitate synaptic transmission in the lobster neuromuscular junction, and a recent further study from rat trigeminal neurons revealed that the toxin slows Na+ channel inactivation without modifying activation process. Here we report that beta -PMTX modifies rat brain type II Na+ channel alpha -subunit (rBII) expressed in human embryonic kidney cells but fails to act on the rat heart alpha -subunit (rH1) at similar concentrations. We constructed a series of chimeric mutants of rBII and rH1 Na+ channels and compared modification of the steady-state Na+ currents by beta -PMTX. We found that a difference in a single amino acid between Glu-1616 in rBII and Gln-1615 in rH1 at the extracellular loop of D4S3-S4 is crucial for the action of beta -PMTX. PMTXs, which are small peptides with 13 amino acids, would be a potential tool for exploring a new functional moiety of Na+ channels.