9 resultados para neuroblastoma

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small blue round cell tumors (SBRCTs) are a set of malignancies that have a particular proclivity for the pediatric age group. These tumors are notoriously difficult to distinguish by histologic evaluation alone, and in recent years a number of new immunohistochemical markers have emerged that can aid in the correct categorization of these lesions. Myogenin, a muscle-restricted nuclear transcription factor, has been demonstrated to be a highly sensitive and specific marker of rhabdomyosarcoma, and is superior to previous markers such as myoglobin, muscle actins, and desmin. The FlI-1 gene product is expressed as part of the EWS/FLI-1 novel chimeric protein that results from the t(11;22)(q24;q12) translocation that occurs in approximately two-thirds of cases of PNET/Ewings sarcoma. Immunohistochemical detection of the FLI-1 gene product can thus complement detection of CD99/MIC2 for the positive identification of PNET/Ewings sarcoma. Markers of neuroblastoma include neural markers, such as chromogranin A, neurofilaments, and synaptophysin. Desmoplastic small round cell tumor (DSRCT) is a tumor with an unusual immunophenotype, including co-expression of cytokeratin, vimentin, and desmin; recent studies have also documented the use of antibodies to the WT-1 gene product as a marker of the chimeric EWS/WT-1 protein formed as a result of the t(11;22)(p13;q12) translocation that characterizes this unique tumor. In summary, there now exists a panel of antibodies defining immunohistochemical markers of individual SBRCTs that can identify rhabdomyosarcoma, PNET/Ewings sarcoma, neuroblastoma, and DSRCT with high sensitivity and specificity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given that cancer is one of the main causes of death worldwide, many efforts have been directed toward discovering new treatments and approaches to cure or control this group of diseases. Chemotherapy is the main treatment for cancer; however, a conventional schedule based on maximum tolerated dose (MTD) shows several side effects and frequently allows the development of drug resistance. On the other side, low dose chemotherapy involves antiangiogenic and immunomodulatory processes that help host to fight against tumor cells, with lower grade of side effects. In this review, we present evidence that metronomic chemotherapy, based on the frequent administration of low or intermediate doses of chemotherapeutics, can be better than or as efficient as MTD. Finally, we present some data indicating that noncytotoxic concentrations of antineoplastic agents are able to both up-regulate the immune system and increase the susceptibility of tumor cells to cytotoxic T lymphocytes. Taken together, data from the literature provides us with sufficient evidence that low concentrations of selected chemotherapeutic agents, rather than conventional high doses, should be evaluated in combination with immunotherapy. Copyright © 2012 UICC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amino acids play essential roles in both metabolism and the proteome. Many studies have profiled free amino acids (FAAs) or proteins; however, few have connected the measurement of FAA with individual amino acids in the proteome. In this study, we developed a metabolomics method to comprehensively analyze amino acids in different domains, using two examples of different sample types and disease models. We first examined the responses of FAAs and insoluble-proteome amino acids (IPAAs) to the Myc oncogene in Tet21N human neuroblastoma cells. The metabolic and proteomic amino acid profiles were quite different, even under the same Myc condition, and their combination provided a better understanding of the biological status. In addition, amino acids were measured in 3 domains (FAAs, free and soluble-proteome amino acids (FSPAAs), and IPAAs) to study changes in serum amino acid profiles related to colon cancer. A penalized logistic regression model based on the amino acids from the three domains had better sensitivity and specificity than that from each individual domain. To the best of our knowledge, this is the first study to perform a combined analysis of amino acids in different domains, and indicates the useful biological information available from a metabolomics analysis of the protein pellet. This study lays the foundation for further quantitative tracking of the distribution of amino acids in different domains, with opportunities for better diagnosis and mechanistic studies of various diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)