50 resultados para nanoparticle precipitation

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of superparamagnetic magnetite (Fe(3)O(4)) nanoparticles by electro-precipitation in ethanol is proposed. Particle average size can be set from 4.4 to 9 nm with a standard deviation around 20%. Combination of wide-angle X-ray scattering (WAXS), Electron energy loss spectroscopy (EELS) and Mossbauer spectroscopy characterizations clearly identifies the particles as magnetite single-crystals (Fe(3)O(4)). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the color stability of a maxillofacial elastomer with the addition of a nanoparticle pigment and/or an opacifier submitted to chemical disinfection and artificial aging. Specimens were divided into four groups (n = 30): group I: silicone without pigment or opacifier, group II: ceramic powder pigment, group III: Barium sulfate (BaSO(4)) opacifier, and group IV: ceramic powder and BaSO(4) opacifier. Specimens of each group (n = 10) were disinfected with effervescent tablets, neutral soap, or 4% chlorhexidine gluconate. Disinfection was done three times a week during two months. Afterward, specimens were submitted to different periods of artificial aging. Color evaluation was initially done, after 60 days (disinfection period) and after 252, 504, and 1008 h of artificial aging with aid of a reflection spectrophotometer. Data were analyzed by three-way ANOVA and Tukey test (alpha = 0.05). The isolated factor disinfection did not statistically influence the values of color stability among groups. The association between pigment and BaSO(4) opacifier (GIV) was more stable in relationship to color change (Delta E). All values of Delta E obtained, independent of the disinfectant and the period of artificial aging, were considered acceptable in agreement with the norms presented in literature. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3625401]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ag precipitation and dissolution reactions in the Cu-3 wt.% Al-4 wt.% Ag alloy were studied using isothermal and non-isothermal analyses. The activation energy values, obtained for the Ag precipitation reaction indicated that, when the Kissinger, Ozawa and Johnson-MehI-Avrami methods are compared, the Kissinger method is the most appropriate. Although the Johnson-Mehl-Avrami equation often does not fit precipitation data, the energy values obtained for Ag precipitation kinetics are in agreement with what was experimentally observed. For the dissolution reaction of Ag precipitates the activation energy values obtained from the Kissinger and Ozawa methods are higher than that found in the literature for the Ag dissolution in Cu. This discrepancy seems to be related to the fact that the activation energy is influenced by the heating rate. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a simple method to co-precipitate CeO2 and Ce0.8Gd0.2O1.9-delta with ammonium hydroxide from solvents such as: water, ethylene glycol, ethyl alcohol and isopropyl alcohol. Characterization by Raman spectroscopy and XRD evidenced the formation of a solid solution of gadolinium-doped ceria at room temperature. Nanometric particles with crystallite size of 3.1 nm were obtained during synthesis using ethyl alcohol as solvent. This is a promising result compared with those mentioned in the literature, in which the smallest crystallite size reported was, 6.5 nm. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of La1-xSrxMnO3 (x = 0.1, 0.2 and 0.3) by homogenous coprecipitation method using urea as precipitant agent Is reported. The particles are smaller than 200 nm after heating at 950 degreesC. Temperature dependence of the electrical resistivity was found to be similar to the reported value for single crystals of these manganites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of several factors has been carried out in order to determine their influence on rare earth phosphates precipitation from H3PO4 solutions obtained after the treatment of the Kola phosphate rock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental data on the precipitation chemistry in the semi-arid savanna of South Africa is presented in this paper. A total of 901 rainwater samples were collected with automatic wet-only samplers at a rural site, Louis Trichardt, and at an industrial site, Amersfoort, from July 1986 to June 1999. The chemical composition of precipitation was analysed for seven inorganic and two organic ions, using ion chromatography. The most abundant ion was SO(4)(2-) and a large proportion of the precipitation is acidic, with 98% of samples at Amersfoort and 94% at Louis Trichardt having a pH below 5.6 ( average pH of 4.4 and 4.9, respectively). This acidity results from a mixture of mineral and organic acids, with mineral acids being the primary contributors to the precipitation acidity in Amersfoort, while at Louis Trichardt, organic and mineral acids contribute equal amounts of acidity. It was found that the composition of rainwater is controlled by five sources: marine, terrigenous, nitrogenous, biomass burning and anthropogenic sources. The relative contributions of these sources at the two sites were calculated. Anthropogenic sources dominate at Amersfoort and biomass burning at Louis Trichardt. Most ions exhibit a seasonal pattern at Louis Trichardt, with the highest concentrations occurring during the austral spring as a result of agricultural activities and biomass combustion, while at Amersfoort it is less pronounced due to the dominance of relatively constant industrial emissions. The results are compared to observations from other African regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical composition, as well as the sources contributing to rainwater chemistry have been determined at Skukuza, in the Kruger National Park, South Africa. Major inorganic and organic ions were determined in 93 rainwater samples collected using an automated wet-only sampler from July 1999 to June 2002. The results indicate that the rain is acidic and the averaged precipitation pH was 4.72. This acidity results from a mixture of mineral acids (82%, of which 50% is H2SO4) and organic acids (18%). Most of the H2SO4 component can be attributed to the emissions of sulphur dioxide from the industrial region on the Highveld. The wet deposition of S and N is 5.9 kgS.ha(-1).yr(-1) and 2.8 kgN.ha(-1).yr(-1), respectively. The N deposition was mainly in the form of NH4+. Terrigenous, sea salt component, nitrogenous and anthropogenic pollutants have been identified as potential sources of chemical components in rainwater. The results are compared to observations from other African regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of crack-free SnO2 supported membranes requires the development of new strategies of synthesis capable to allow controlled changes of surface chemistry and to improve the processability of supported layers. In this way, the controlled modification of the SnO2 nanoparticle surface by adding capping molecules like Tiron(R) ((OH)(2)C6H2(SO3Na)(2)) during the sol-gel process was studied, aiming to obtain high performance membranes. Colloidal suspensions were prepared by hydrolyzing SnCl4.5H(2)O aqueous solution with NH4OH in presence of Tiron(R). The effect of the amount of Tiro(R) (from I to 20 wt.%) on the structural features of nanoparticles, powder redispersability and particle-solution interface properties was investigated by X-ray powder diffraction (XRPD), extended X-ray absorption fine structure (EXAFS), quasi-elastic light scattering and electrophoretic mobility measurements. XRPD and EXAFS results showed that the addition of Tiron(R) up to 20 wt.% to colloidal suspensions does not affect the crystallite size of SnO2 primary particles, determined around 2-3 nm. This value is comparable to the hydrodynamic size measured after redispersion of powder prepared with amount of Tiro(R) higher than 7.5 wt.%, indicating the absence of condensation reactions between primary particles after the initial precipitation step. As a consequence the powder with amount of Tiron(R) > 7.5 wt.%, can be fully redispersed in aqueous solution at pH greater than or equal to I I until a nanoparticle concentration of 6 vol.%. The electrophoresis measurements showed a decrease of the isoelectric point by increasing the amount of grafted Tiron(R) at the SnO2 nanoparticle surface, resulting in negatively charged particle-solution interface in all the studied pH range (2-11). These features govern the gelation process favoring the preparation of crack-free SnO2 supported membranes. The control exercised by Tiron(R) modifying agent in the aggregation process allows the fine-tuning of the porosity, from 0.124 to 0.065 cm(3) g(-1), and mean pore size, from 6.4 to 1.9 nm, as the amount of grafted molecules increases from 0 to 10 wt.%. In consequence, the membrane cut-off determined by filtration of polyethylene glycol standard solutions can be screened from 1500 to 3500 g mol(-1). (C) 2002 Elsevier B.V. B.V. All rights reserved.