84 resultados para monitoring process mean and variance
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Traditionally, an (X) over bar -chart is used to control the process mean and an R-chart to control the process variance. However, these charts are not sensitive to small changes in process parameters. A good alternative to these charts is the exponentially weighted moving average (EWMA) control chart for controlling the process mean and variability, which is very effective in detecting small process disturbances. In this paper, we propose a single chart that is based on the non-central chi-square statistic, which is more effective than the joint (X) over bar and R charts in detecting assignable cause(s) that change the process mean and/or increase variability. It is also shown that the EWMA control chart based on a non-central chi-square statistic is more effective in detecting both increases and decreases in mean and/or variability.
Resumo:
Traditionally, an (X) over bar chart is used to control the process mean and an R chart is used to control the process variance. However, these charts are not sensitive to small changes in the process parameters. The adaptive ($) over bar and R charts might be considered if the aim is to detect small disturbances. Due to the statistical character of the joint (X) over bar and R charts with fixed or adaptive parameters, they are not reliable in identifing the nature of the disturbance, whether it is one that shifts the process mean, increases the process variance, or leads to a combination of both effects. In practice, the speed with which the control charts detect process changes may be more important than their ability in identifying the nature of the change. Under these circumstances, it seems to be advantageous to consider a single chart, based on only one statistic, to simultaneously monitor the process mean and variance. In this paper, we propose the adaptive non-central chi-square statistic chart. This new chart is more effective than the adaptive (X) over bar and R charts in detecting disturbances that shift the process mean, increase the process variance, or lead to a combination of both effects. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose - The aim of this paper is to present a synthetic chart based on the non-central chi-square statistic that is operationally simpler and more effective than the joint X̄ and R chart in detecting assignable cause(s). This chart will assist in identifying which (mean or variance) changed due to the occurrence of the assignable causes. Design/methodology/approach - The approach used is based on the non-central chi-square statistic and the steady-state average run length (ARL) of the developed chart is evaluated using a Markov chain model. Findings - The proposed chart always detects process disturbances faster than the joint X̄ and R charts. The developed chart can monitor the process instead of looking at two charts separately. Originality/value - The most important advantage of using the proposed chart is that practitioners can monitor the process by looking at only one chart instead of looking at two charts separately. © Emerald Group Publishing Limted.
Resumo:
In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control the process mean and variance. During the first stage, one item of the sample is inspected; if its value X, is close to the target value of the process mean, then the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the statistic T = Sigma [x(i) - mu(0) + xi sigma(0)](2) is computed taking into account all items of the sample. The design parameter is function of X-1. When the statistic T is larger than a specified value, the sample is classified as nonconforming. According to the synthetic procedure, the signal is based on Conforming Run Length (CRL). The CRL is the number of samples taken from the process since the previous nonconforming sample until the occurrence of the next nonconforming sample. If the CRL is sufficiently small, then a signal is generated. A comparative study shows that the SyTS chart and the joint X and S charts with double sampling are very similar in performance. However, from the practical viewpoint, the SyTS chart is more convenient to administer than the joint charts.
Resumo:
A standard X chart for controlling a process takes regular individual observations, for instance every half hour. This article proposes a modification of the X chart that allows one to take supplementary samples. The supplementary sample is taken (and the (X) over bar and R values computed) when the current value of X falls outside the control limits. With the supplementary sample, the signal of out-of-control is given by an (X) over bar value outside the (X) over bar chart's control limits or an R value outside the R chart's control limit. The proposed chart is designed to hold the supplementary sample frequency, during the in-control period, as low as 5% or less. In this context, the practitioner might prefer to verify an out-of-control condition by simply comparing the (X) over bar and R values with the control limits. In other words, without plotting the (X) over bar and R points. The X chart with supplementary samples has two major advantages when compared with the standard (X) over bar and A charts: (a) the user will be plotting X values instead of (X) over bar and R values; (b) the shifts in the process mean and/or changes in the process variance are detected faster.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this article, we propose new control charts for monitoring the mean vector and the covariance matrix of bivariate processes. The traditional tools used for this purpose are the T (2) and the |S| charts. However, these charts have two drawbacks: (1) the T (2) and the |S| statistics are not easy to compute, and (2) after a signal, they do not distinguish the variable affected by the assignable cause. As an alternative to (1), we propose the MVMAX chart, which only requires the computation of sample means and sample variances. As an alternative to (2), we propose the joint use of two charts based on the non-central chi-square statistic (NCS statistic), named as the NCS charts. Once the NCS charts signal, the user can immediately identify the out-of-control variable. In general, the synthetic MVMAX chart is faster than the NCS charts and the joint T (2) and |S| charts in signaling processes disturbances.
Resumo:
The MRMAX chart is a single chart based on the standardized sample means and sample ranges for monitoring the mean vector and the covariance matrix of multivariate processes. User's familiarity with the computation of these statistics is a point in favor of the MRMAX chart. As a single chart, the recently proposed MRMAX chart is very appropriate for supplementary runs rules. In this article, we compare the supplemented MRMAX chart and the synthetic MRMAX chart with the standard MRMAX chart. The supplementary and the synthetic runs rules enhance the performance of the MRMAX chart. © 2013 Elsevier Ltd.
Resumo:
In the present study, pregnancy and the estrous cycle were monitored in captive brown brocket deer (Mazama gouazoubira) by measuring fecal progestagens with a commercial enzyme immunoassay (EIA), along with behavioral data. Fecal samples were collected twice a week during pregnancy and daily during the estrous cycle and post-partum period. It was possible to distinguish between inter-luteal and luteal phases of the estrous cycle. Behavioral estrus corresponded with low concentrations of fecal progestagens. Samples from two consecutive cycles were available from five hinds, and the mean estrous cycle (n = 10) was 26.9 +/- 1.7 d (mean +/- S.E.M.). However, when two extreme cycles (34 and 37 d) were deleted, the mean estrous cycle was 24.7 +/- 1.2 d. Three animals became pregnant (gestation ranged from 208 to 215 d). After fertile breeding, progestagen concentration in these hinds remained among luteal phase concentrations throughout pregnancy, with the exception of a few peaks. Within 4 d post-partum, two hinds reached interluteal phase values, while one hind maintained luteal concentrations for at least 1 week. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Recent studies have shown that the (X) over bar chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional (X) over bar chart. This article extends these studies for processes that are monitored by both the (X) over bar and R charts. A Markov chain model is used to determine the properties of the joint (X) over bar and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint (X) over bar and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.
Resumo:
This paper deals with the joint economic design of (x) over bar and R charts when the occurrence times of assignable causes follow Weibull distributions with increasing failure rates. The variable quality characteristic is assumed to be normally distributed and the process is subject to two independent assignable causes (such as tool wear-out, overheating, or vibration). One cause changes the process mean and the other changes the process variance. However, the occurrence of one kind of assignable cause does not preclude the occurrence of the other. A cost model is developed and a non-uniform sampling interval scheme is adopted. A two-step search procedure is employed to determine the optimum design parameters. Finally, a sensitivity analysis of the model is conducted, and the cost savings associated with the use of non-uniform sampling intervals instead of constant sampling intervals are evaluated.
Resumo:
Recent studies have shown that the X̄ chart with variable sampling intervals (VSI) and/or with variable sample sizes (VSS) detects process shifts faster than the traditional X̄ chart. This article extends these studies for processes that are monitored by both the X̄ and R charts. A Markov chain model is used to determine the properties of the joint X and R charts with variable sample sizes and sampling intervals (VSSI). The VSSI scheme improves the joint X̄ and R control chart performance in terms of the speed with which shifts in the process mean and/or variance are detected.