9 resultados para model alloys

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Morphing aircraft have the ability to actively adapt and change their shape to achieve different missions efficiently. The development of morphing structures is deeply related with the ability to model precisely different designs in order to evaluate its characteristics. This paper addresses the dynamic modeling of a sectioned wing profile (morphing airfoil) connected by rotational joints (hinges). In this proposal, a pair of shape memory alloy (SMA) wires are connected to subsequent sections providing torque by reducing its length (changing airfoil camber). The dynamic model of the structure is presented for one pair of sections considering the system with one degree of freedom. The motion equations are solved using numerical techniques due the nonlinearities of the model. The numerical results are compared with experimental data and a discussion of how good this approach captures the physical phenomena associated with this problem. © The Society for Experimental Mechanics, Inc. 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fatigue crack behavior in metals and alloys under constant amplitude test conditions is usually described by relationships between the crack growth rate da/dN and the stress intensity factor range Delta K. In the present work, an enhanced two-parameter exponential equation of fatigue crack growth was introduced in order to describe sub-critical crack propagation behavior of Al 2524-T3 alloy, commonly used in aircraft engineering applications. It was demonstrated that besides adequately correlating the load ratio effects, the exponential model also accounts for the slight deviations from linearity shown by the experimental curves. A comparison with Elber, Kujawski and "Unified Approach" models allowed for verifying the better performance, when confronted to the other tested models, presented by the exponential model. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dispersion relations along the principal symmetry directions in BCC lithium-sodium alloys are calculated using second-order perturbation theory. The local modified Hoshino-Youngmodel potential was used for the lithium and the local Harrison model potential for sodium. The phonon density of states, the root mean square displacements and (Θ-T) curves are also calculated. In the absence of experimental data, just the theoretical predictions are presented here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heating titanium structures is assumed to relieve tensions induced by the casting process as well as possibly optimizing some mechanical properties. The aim of this investigation was to evaluate the effect of thermal treatments on tensile strength of commercially pure titanium (CP Ti) and Ti-6Al-4V alloy. Thirty dumbbell rods, with diameters of 3.0 mm at the central segment and lengths of 42 mm, were cast for each metal using the Rematitan System. CP Ti and Ti-6Al-4V specimens were randomly divided into three groups of ten: a control group that received no thermal treatment and two test groups. One (T1) was heated at 750°C for 2 h and the other (T2) was annealed at 955°C for 1 h and aged at 620°C for 2 h. Tensile strength was measured with a universal testing machine (MTS model 810). Tensile strength means and standard deviations were statistically compared using a Kruskal-Wallis test at a α = 0.05 significance level. No statistically significant differences in tensile strength were observed among CP Ti groups. For the Ti-6Al-4V alloy, the control and T1 groups revealed statistically higher tensile strengths when compared to the T2 group, with no significant difference between the control and T1 groups. © 2005 Springer Science + Business Media, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this work is to illustrate an application of angular active control in a sectioned airfoil using shape memory alloys. In the proposed model, one wants to establish the shape of the airfoil profile based on the determination of an angle between its two sections. This angle is obtained by the effect of the shape memory of the alloy by passing an electric current that modifies the temperature of the wire through the Joule effect, changing the shape of the alloy. This material is capable of converting thermal energy into mechanical energy and once permanently deformed, the material can return to its original shape by heating. Due to the presence of nonlinear effects, especially in the mathematical model of the alloy, this work proposes the application of a control system based on fuzzy logic. Through numerical tests, the performance of the fuzzy controller is compared with an on-off controller applied in a sectioned airfoil model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic properties of disordered binary alloys are studied via the calculation of the average Density of States (DOS) in two and three dimensions. We propose a new approximate scheme that allows for the inclusion of local order effects in finite geometries and extrapolates the behavior of infinite systems following finite-size scaling ideas. We particularly investigate the limit of the Quantum Site Percolation regime described by a tight-binding Hamiltonian. This limit was chosen to probe the role of short range order (SRO) properties under extreme conditions. The method is numerically highly efficient and asymptotically exact in important limits, predicting the correct DOS structure as a function of the SRO parameters. Magnetic field effects can also be included in our model to study the interplay of local order and the shifted quantum interference driven by the field. The average DOS is highly sensitive to changes in the SRO properties and striking effects are observed when a magnetic field is applied near the segregated regime. The new effects observed are twofold: there is a reduction of the band width and the formation of a gap in the middle of the band, both as a consequence of destructive interference of electronic paths and the loss of coherence for particular values of the magnetic field. The above phenomena are periodic in the magnetic flux. For other limits that imply strong localization, the magnetic field produces minor changes in the structure of the average DOS. © World Scientific Publishing Company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A renormalization-group calculation of the temperature-dependent nuclear spin relaxation rate for a magnetic impurity in a metallic host is reported. The calculation follows a simplified procedure, which produces accurate rates in the low-temperature Fermi-liquid regime, although yielding only qualitatively reliable results at higher temperatures. In all cases considered, as the temperature T diminishes, the rates peak before decaying linearly to zero in the Fermi-liquid range. For T → 0, the results agree very well with Shiba's expression relating the low-temperature coefficient of the relaxation rate to the squared zero-temperature susceptibility. In the Kondo limit, the enhanced susceptibility associated with the Kondo resonance produces a very sharp peak in the relaxation rate near the Kondo temperature. © 1991.