4 resultados para mine water

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This monograph, presented in order to obtain the title of Environmental Engineer, proposes the use of nucleation techniques for the restoration of permanent preservation areas formed by three springs that contribute to the formation of Santo Anastacio river, city of Regent Feijo – São Paulo. Through Mine Water Project, landowners are encouraged to restore and conserve springs that contribute to the public water supply, being paid through the fees for environmental services. Once the simulation of this payment was reached at R$ 630.00 per year. Nucleation techniques will be proposed in order to facilitate the ecological succession, through techniques known as transposition of the soil, transposition of the branches, artificial perches and planting in groups of Anderson, totaling 81 cores covering an area of 208.3 m2 which corresponds to 1.9% of the total area to be restored. Made the survey of forest fragments in the watershed, it was found that only 12.39% of the total area has remnant vegetation

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acid mine drainage (AMD) is a serious environmental problem that creates acidic solution with high Mn concentrations. The speciation of residual Mn from AMD after an active treatment involving the addition of a neutralizing agent can reliably evaluate the treatment efficiency and provide knowledge of the Mn species being inputted into the environment. The aim of this study was to evaluate the in situ lability and speciation of Mn using the diffusive gradients in thin films (DGT) technique with treated drainage water from a uranium mine (TAMD). DGT devices with different binding phases (Chelex-100 and P81 and DE81membranes) were used to perform the in situ speciation of Mn. A comparison of the results from deploying DGT in the laboratory and in situ shows that the speciation of Mn in TAMD should be performed in situ. Linear deployment curves (from in situ experiments) indicate that the DGT device containing the Chelex-100 binding phase can be used to evaluate Mn lability in TAMD. The labile Mn fraction (from in situ measurements) obtained using the device containing the Chelex-100 resin ranged from 63 to 81% of the total Mn concentration and, when compared to the speciation obtained using the CHEAQS software, indicated that this device was capable of uptaking the free Mn2+ and a portion of the MnSO4(aq). The values obtained using the DGT technique were compared to those from on site solid phase extraction, and a good agreement was found between the results. The amount of negative Mn species sampled by DE81 device was insignificant (<1.5%) for all of the sites. Sites containing a relatively small amount of Ca (<40mgL-1) and measured using devices containing the P81 membrane agreed with the concentration predicted by the CHEAQS software for positive Mn species (Mn2+ and Mn(OH)+). Nevertheless, the speciation obtained using the CHEAQS software indicated that the concentrations of positive Mn species were underestimated for sites with relatively high Ca concentrations (>150mgL-1), which take place due to the saturation of binding sites in the P81 membrane. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes a method for decontamination of acid drainage water from a uranium mine, as an alternative process to lime treatment. The research embodied the recovery of uranium with an ion-exchange resin, treatment of effluent resin with lime, or with inorganic adsorbents and biosorbents. The uranium decontamination level using the resin process was 94% and allowed the recovery of this element as a commercial product. Among the inorganic adsorbents studied, phosphogypsum was effective for Ra-226, Ra-228, and Pb-210 removal. Among the biosorbents, Sargassum sp.was superior in relation to its specific capacity to accumulate and remove Ra-226.