83 resultados para microvessel tissue engineering
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This work evaluated the osteoconductive properties of autogenous demineralized dentin matrix (ADDM) on surgical bone defects in the parietal bone of rabbits, using the guided bone regeneration technique and polytetrafluoroethylene (PTFE) membrane. Materials and Methods: Surgical bone defects were created in 24 adult rabbits and repaired with either ADDM and PTFE (experimental group) or PTFE alone (control group). The ADDM had been obtained from the central incisors of the experimental rabbits. The rabbits were sacrificed after 15, 30, 60, and 90 days and the defects examined radiographically and histologically. Results: Radiographically, the defects in the experimental animals achieved radiopacity more quickly than the defects in the control group. Discussion: After 15, 30, 60, and 90 days of observation following surgery, the ADDM slices appeared to stimulate new bone formation. The dentin slices were completely incorporated into the new bone tissue and were resorbed during the bone repair. Conclusions: Bone repair was accelerated on the bone defects treated with ADDM when compared to the control group.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The purpose of this work was to study the bone tissue reaction after porous polyethylene (Polipore) implantation into surgical defects in the parietal bones of rats with streptozotocin-induced diabetes, treated with salmon calcitonin. Materials and Methods: Porous polyethylene implants were placed in bone defects created in 36 adult female rats. The rats were divided into 3 equal groups: diabetic treated with calcitonin (DCa), diabetic (D), and control (C). The animals of the DCa group received applications of salmon calcitonin on alternating days immediately after the surgery until sacrifice. The rats were sacrificed after 15, 30, 60, and 90 days, and the defects were examined histologically and statistically through histomorphometric analysis. Results: Histomorphometric analysis showed that there was no statistically significant difference in the mean quantity of inflammatory cells among all study groups after 15 and 90 days. At 30 days, a statistically significant difference was observed between the D and C groups and the D and DCa groups. At 60 days, there was no statistically significant difference between the D and DCa groups. Discussion: Porous polyethylene can be considered an option for implant material when there are investigations that prove its biocompatibility and stability in the host tissues. Salmon calcitonin positively aided the bone repair and attenuated the inflammatory response until 30 days after the surgery. Conclusion: Porous polyethylene was tolerated by the host tissues in all groups, and moderate chronic inflammatory reaction was observed up to the 90-day period. Salmon calcitonin attenuated the inflammatory response up until 30 days.
Resumo:
Articular lesions are still a major challenge in orthopedics because of cartilage's poor healing properties. A major improvement in therapeutics was the development of autologous chondrocytes implantation (ACI), a biotechnology-derived technique that delivers healthy autologous chondrocytes after in vitro expansion. To obtain cartilage-like tissue, 3D scaffolds are essential to maintain chondrocyte differentiated status. Currently, bioactive 3D scaffolds are promising as they can deliver growth factors, cytokines, and hormones to the cells, giving them a boost to attach, proliferate, induce protein synthesis, and differentiate. Using mesenchymal stem cells (MSCs) differentiated into chondrocytes, one can avoid cartilage harvesting. Thus, we investigated the potential use of a platelet-lysate-based 3D bioactive scaffold to support chondrogenic differentiation and maintenance of MSCs. The MSCs from adult rabbit bone marrow (n=5) were cultivated and characterized using three antibodies by flow cytometry. MSCs (1×105) were than encapsulated inside 60μl of a rabbit platelet-lysate clot scaffold and maintained in Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 supplemented with chondrogenic inductors. After 21 days, the MSCs-seeded scaffolds were processed for histological analysis and stained with toluidine blue. This scaffold was able to maintain round-shaped cells, typical chondrocyte metachromatic extracellular matrix deposition, and isogenous group formation. Cells accumulated inside lacunae and cytoplasm lipid droplets were other observed typical chondrocyte features. In conclusion, the usage of a platelet-lysate bioactive scaffold, associated with a suitable chondrogenic culture medium, supports MSCs chondrogenesis. As such, it offers an alternative tool for cartilage engineering research and ACI. © 2013 Informa UK Ltd.
Resumo:
Among the many tissues in the human body, bone has been considered as a powerful marker for regeneration and its formation serves as a prototype model for tissue engineering based on morphogenesis. Therefore, collagen type I is one of the most useful biomaterials used in tissue engineering as extracellular matrix components capable to promote bone healing. The literature reveals excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, making collagen type I the primary resource in medical applications. Thus, it was also used for tissue engineering including skin replacement, bone substitutes, and artificial blood vessels and valves. The authors describe the treatment of an abscessed apical periodontal cyst and show good outcomes of bone healing, using tissue engineering, as collagen type I matrix. © 2013 by Mutaz B. Habal, MD.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.
Resumo:
Scaffolds of chitosan and collagen can offer a biological niche for the growth of adipose derived stem cells (ADSC). The objective of this work was to characterize the physico-chemical properties of the scaffolds and the ADSC, as well as their interactions to direct influences of the scaffolds on the behavior of ADSC. The methodology included an enzymatic treatment of fat obtained by liposuction by collagenase, ASDC immunophenotyping, cell growth kinetics, biocompatibility studies of the scaffolds analyzed by the activity of alkaline phosphatase (AP), nitric oxide (NO) determination by the Griess-Saltzman reaction, and images of both optical and scanning electron microscopy of the matrices. The extent of the crosslinking of genipin and glutaraldehyde was evaluated by ninhydrin assays, solubility tests and degradation of the matrices. The results showed that the matrices are biocompatible, exhibit physical and chemical properties needed to house cells in vivo and are strong stimulators of signaling proteins (AP) and other molecules (NO) which are important in tissue healing. Therefore, the matrices provide a biological niche for ADSC adhesion, proliferation and cells activities.
Resumo:
This study evaluated the effects of homogenous demineralized dentin matrix (HDDM) slices and platelet-rich plasma (PRP) in surgical defects created in the parietal bones of alloxan-induced diabetic rabbits, treated with a guided bone regeneration technique. Biochemical, radiographic, and histological analyses were performed. Sixty adult New Zealand rabbits were divided into five groups of 12: normoglycaemic (control, C), diabetic (D), diabetic with a PTFE membrane (DM), diabetic with a PTFE membrane and HDDM slices (DM-HDDM), and diabetic with PTFE membrane and PRP (DM-PRP). The quantity and quality of bone mass was greatest in the DM-HDDM group (respective radiographic and histological analyses: at 15 days, 71.70±16.50 and 50.80±1.52; 30 days, 62.73±16.51 and 54.20±1.23; 60 days, 63.03±11.04 and 59.91±3.32; 90 days, 103.60±24.86 and 78.99±1.34), followed by the DM-PRP group (respective radiographic and histological analyses: at 15 days 23.00±2.74 and 20.66±7.45; 30 days 31.92±6.06 and 25.31±5.59; 60 days 25.29±16.30 and 46.73±2.07; 90 days 38.10±14.04 and 53.38±9.20). PRP greatly enhanced vascularization during the bone repair process. Abnormal calcium metabolism was statistically significant in the DM-PRP group (P<0.001) for all four time intervals studied, especially when compared to the DM-HDDM group. Alkaline phosphatase activity was significantly higher in the DM-HDDM group (P<0.001) in comparison to the C, D, and DM-PRP groups, confirming the findings of intense osteoblastic activity and increased bone mineralization. Thus, HDDM promoted superior bone architectural microstructure in bone defects in diabetic rabbits due to its effective osteoinductive and osteoconductive activity, whereas PRP stimulated angiogenesis and red bone marrow formation.
Resumo:
Background: Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering.Methods: Twenty-five Swiss Albino mice were used. A 10 x 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology.Results: A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface.Conclusion: The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Platelet-derived growth factor-BB (PDGF-BB) stimulates repair of healing-impaired chronic wounds such as diabetic ulcers and periodontal lesions. However, limitations in predictability of tissue regeneration occur due, in part, to transient growth factor bioavailability in vivo. Here, we report that gene delivery of PDGF-B stimulates repair of oral implant extraction socket defects. Alveolar ridge defects were created in rats and were treated at the time of titanium implant installation with a collagen matrix containing an adenoviral (Ad) vector encoding PDGF-B (5.5 x 10(8) or 5.5 x 10(9) pfu ml (1)), Ad encoding luciferase (Ad-Luc; 5.5 x 10(9) pfu ml (1); control) or recombinant human PDGF-BB protein (rhPDGF-BB, 0.3 mg ml (1)). Bone repair and osseointegration were measured through backscattered scanning electron microscopy, histomorphometry, microcomputed tomography and biomechanical assessments. Furthermore, a panel of local and systemic safety assessments was performed. Results indicated that bone repair was accelerated by Ad-PDGF-B and rhPDGF-BB delivery compared with Ad-Luc, with the high dose of Ad-PDGF-B more effective than the low dose. No significant dissemination of the vector construct or alteration of systemic parameters was noted. In summary, gene delivery of Ad-PDGF-B shows regenerative and safety capabilities for bone tissue engineering and osseointegration in alveolar bone defects comparable with rhPDGF-BB protein delivery in vivo. Gene Therapy (2010) 17, 95-104; doi: 10.1038/gt.2009.117; published online 10 September 2009