86 resultados para metamorphic
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A subduction complex composed of ocean floor material mixed with arc-derived metasediments crops out in the Elephant Island group and at Smith Island, South Shetland Islands, Antarctica, with metamorphic ages of 120-80 Ma and 58-47 Ma? respectively. Seven metamorphic zones (I-VII) mapped on Elephant Island delineate a gradual increase in metamorphic grade from the pumpellyite-actinolite facies, through the crossite-epidote blueschist facies, to the lower amphibolite facies. Geothermometry in garnet-amphibole and garnet-biotite pairs yields temperatures of about 350 degrees C in zone III to about 525 degrees C in zone VII. Pressures were estimated on the basis of Si content in white mica, Al2O3 content in alkali amphibole, Na-M4/Al-IV in sodic-calcic and calcic amphibole, Al-VI/Si in calcic amphibole, and jadeite content in clinopyroxene. Mean values vary from about 6-7.5 kbar in zone II to about 5 kbar in zone VII. Results from the other islands of the Elephant Island group are comparable to those from the main island; Smith Island yielded slightly higher pressures, up to 8 kbar, with temperatures estimated between 300 and 350 degrees C. Zoned minerals and other textural indications locally enable inference of P-T-t trajectories, all with a clockwise evolution. A reconstruction in space and time of these P-T-t paths allows an estimate of the thermal structure in the upper crust during the two ductile deformation phases (D-1 & D-2) that affected the area. This thermal structure is in good agreement with the one expected for a subduction zone. The arrival and collision of thickened oceanic crust may have caused the accretion and preservation of the subduction complex. In this model, D-1 represents the subduction movements expressed by the first vector of the clockwise P-T-t path, D-2 reflects the collision corresponding to the second vector with increasing temperature and decreasing pressure, and D-3 corresponds to isostatic uplift accompanied by erosion, under circumstances of decreasing temperature and pressure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As frações granulométricas retidas nas peneiras n°s (ABNT) 5-10, 10-30, 30-50, e 50-60 de quatro calcários, sendo dois sedimentares e dois metamórficos, foram incubadas durante 160 dias com três tipos de solos, em condições de laboratório. A eficiência das frações na neutralização da acidez dos solos foi avaliada pela variação do pH. Os resultados permitiram concluir que a referida eficiência independe da natureza geológica do calcário mas depende do tipo de solo, sendo decrescente na seguinte ordem: LVd, LEd e LEm. Apesar da legislação atual normatizar as características físicas dos calcários, bem como os seus graus de eficiência, a presente pesquisa sugere novos valores para a eficiência relativa das diferentes frações granulometricas de calcários: fração maior do que 10:0%, de 30:35%; de 30-50:75% e menor que 50:100%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
New structural data from Elephant Island and adjacent islands are presented with the objective to improve the understanding of subduction kinematics in the area northeast of the Antarctic Peninsula. on the island, a first deformation phase, D-1, produced a strong SL fabric with steep stretching and mineral lineations, partly defined by relatively high pressure minerals, such as crossite and glaucophane. D-1 is interpreted to record southward subduction along an E-W trench with respect to the present position of the island. A second phase, D-2, led to intense folding with steep E-W-trending axial surfaces. The local presence of sinistral C'-type sheer bands related to this phase and the oblique inclination of the L-2 stretching lineations are the main arguments to interpret this phase as representing oblique sinistral transpressive shear along steep, approximately E-W-trending shear zones, with the northern (Pacific) block going down with respect to the southern (Antarctic Peninsula) block. The sinistral strike-slip component may represent a trench-linked strike-slip movement as a consequence of oblique subduction. Lithostatic pressure decreased and temperature increased to peak values during D-2, interpreted to represent the collision of thickened oceanic crust with the active continental margin. The last deformation phase, D-3, is characterised by post-metamorphic kink bands, partially forming conjugate sets consistent with E-W shortening and N-S extension. The rock units that underlie the island probably rotated during D-3, in Cenozoic times, together with the trench, from an NE-SW to the present ENE-WSW position, during the progressive opening of the Scotia Sea. The similarity between the strain orientation of D-3 and that of the sinistral NE-SW Shackleton Fracture Zone is consistent with this interpretation. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Monazite from chromitites of Cedrolina (Goias State, Brazil) was investigated by electron microprobe and Raman spectroscopy. Monazite has been rarely encountered in chromitites. In Brazil, it was previously reported from chromitites of the Campo Formoso layered intrusion. Comparison between the two occurrences indicates similar morphology and textural characteristics, but remarkable differences in chemical composition. In both cases, monazite occurs as irregular grains (up to 200 mu m) preferentially located in the chlorite-serpentine matrix of the chromitite, more rarely included in chromite. However, the monazite from Cedrolina is characterized by higher Ce/La ratio, and Pr, Nd, Th contents, compared with the monazite from Campo Formoso. The obtained Raman spectra are very similar in the two cases, suggesting that the compositional variation of monazites and the spectral resolution of the Raman do not allow a conclusive chemical analysis with Raman spectra. Textural evidence indicates that, in both occurrences, monazite precipitation did not take place at high temperature, concomitantly with the host chromitite. In the Campo Formoso chromitites, precipitation of monazite has been related with percolation of hydrothermal, aqueous and acid fluids emanating from a granite batholith. on the contrary, the Cedrolina monazite probably formed during one of the metamorphic events that affected the area in which the host chromitite occurs.
Resumo:
A geofísica é um método eficaz para investigação de áreas impactadas pelos mais diversos tipos de contaminantes, principalmente em locais de disposição de resíduos sólidos domiciliares e também utilizada na caracterização de contrastes de propriedades físicas em presença de substâncias poluentes. Este trabalho utilizou o método de Polarização Induzida numa área de disposição de resíduos sólidos desativada, localizada no município de Caçapava do Sul - RS. O aterro está assentado sobre rochas metamórficas fraturadas, pertencentes ao Complexo Metamórfico Vacacaí (Neoproterozóico). Foram realizadas 8 linhas de caminhamento elétrico, com espaçamento de 5 m entre eletrodos e 10 níveis de investigação, além de 83 medidas de direção e sentido de fraturas. O resultado geofísico permite caracterizar a camada de resíduos por baixos valores de cargabilidade. Anomalias verticais abaixo da camada de resíduos são interpretadas como zonas de fratura com possível acúmulo de chorume, caracterizadas por baixos valores de cargabilidade.
Resumo:
The oldest fragment of continental crust recognized in South America occurs as an isolated Archean enclave in northeastem Brazil's Borborema Province, ca. 600 Ma Brasiliano-Pan African orogenic belt. This Archean fragment, the Sao Jose do Campestre massif, is surrounded by large tracts of 2.2-2.0 Ga Paleoproterozoic gneisses and is located more than 600-1500 km from the much larger assemblages of Archean rocks found in the Sao Fransciso and Amazonian cratons, located to the south and west, respectively. Geochronological studies of the Sao Jose do Campestre massif show that its oldest rocks contain zircons with U-Pb ages up to 3.5 Ga and Sm-Nd T-DM model ages of more than 3.7 Ga, indicating that they represent reworked crust. This older nucleus is flanked by both reworked and juvenile 3.25 and 3.18 Ga rocks which arc intruded by both 3.00 and 2.69 Ga plutonic bodies. The protracted evolution the Sao Jose do Campestre massif is consistent with that of a larger continental mass as opposed to a small crustal fragment that grew in isolation. As such, the Sao Jose do Campestre massif is interpreted as representing a detached piece of an evolved craton that became entrained with younger rocks during a subsequent Paleoproterozoic accretionary-orogenic event. This hypothesis is bolstered by the presence of Paleoproterozoic gneisses that envelop the Sao Jose do Campestre massif, as well as the existence of ca. 2.0 Ga metamorphic zircon and monazite within its rocks. The occurrence of several different Archean cratonic basement inliers within the greater Paleoproterozoic crustal framework of the Borborema Province suggests that cratonic slices spalled off one or more larger Archean masses prior to the ca. 2.2-2.0 Ga Paleoproterozoic orogenic collage. A important challenge is to link these older fragments to their parent cratons. Although results are not unique, the pattern of ages and isotopic signatures observed in the Sao Jose do Campestre massif is similar to that seen in parts of the Sao Francisco Craton, and it is possible that the Sao Jose do Campestre massif is a fragment of an Archean continental fragment formed during an episode of continental breakup prior to 2200 Ma. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The Santa Cruz massif, which forms part of the Ipanema mafic/ultramafic Complex, Minas Gerais, Brazil, has an exposed upward sequence of metadunite, metaharzburgite (including three separate chromitite layers), metapyroxenite, metagabbro, and metaanorthosite. Primary igneous chromite grains in the main chromitite layer are poikiloblastic and tectonically fragmented, and have a narrow (10-20 mum) margin of chromian spinel. Cataclased chromite fragments are extensively replaced and mantled by chromian spinel; they have a composite margin comprised of an inner zone of more aluminous spinel and an euhedral outer zone of more Cr-rich spinel, representing granulite and amphibolite facies metamorphic events, respectively. The contents of platinum-group elements (PGE) and Au in chromite separates are relatively high (Os 45, Ir 23, Ru 136, Rh 19, Pt 98, Pd 63, and Au 83 ppb), and significantly enriched (similar to 4x) over whole rock values. Platinum-group minerals are not observed and micrometre-sized inclusions of sulfide minerals (chalcopyrite and pentlandite) in relict chromite are rare. However, comparison of mineral proportions in the separated chromite and whole rock shows that the precious metals are hosted predominantly in the relict igneous chromite grains, rather than the secondary chromian spinel and primary and secondary Mg-rich silicates. The major element composition and average chondrite-normalized PGE pattern of the separated chromite correspond to S-poor stratiform chromitite. We suggest that the precious metals accumulated with chromite during crystallization of a S-poor magma, and were not remobilized in the relict chromite during the subsequent high grade metamorphism.
Resumo:
Whole rock Pb isotope data can be used to determine the provenance of different blocks within the Rodinia supercontinent, providing a test for paleogeographic reconstructions. Calculated isotopic values for the source region of the Grenville-deformed SW Amazon craton (Rondonia, Brazil), anchored by published U-Pb zircon ages, are compared to those from the Grenville belt of North America and Grenvillian basement inliers in the southern Appalachians. Both the SW Amazon craton and the allochthonous Blue Ridge/Mars Hill terrane are defined by a similar Pb isotopic signature, indicating derivation from an ancient source region with an elevated U/Pb ratio. In contrast, the Grenville Province of Laurentia (extending from Labrador to the Llano Uplift of Texas) is characterized by a source region with a distinctly lower, time-integrated U/Pb ratio. Published U-Pb zircon ages (ca. 1.8 Ga) and Nd model ages (1.4-2.2 Ga) for the Blue Ridge/Mars Hill terrane also suggest an ancient provenance very different from the rest of the adjacent Grenville belt, which is dominated by juvenile 1.3-1.5 Ga rocks. The presence of mature continental material in rocks older than 1.15 Ga in the Blue Ridge/ Mars Hill terrane is consistent with characteristics of basement rocks from the SW Amazon craton. High-grade metamorphism of the Blue Ridge/Mars Hill basement resulted in purging of U, consistent with observations of the rest of the North American Grenville province. In contrast, the Grenvillian metamorphic history of the Amazon appears to have been much more heterogeneous, with both U enrichment and U depletion recorded locally. We propose that the Blue Ridge/ Mars Hill portion of the Appalachian basement is of Amazonian provenance and was transferred to Laurentia during Grenvillian orogenesis after similar to1.15 Ga. The presence of these Amazonian rocks in southeastern Laurentia records the northward passage of the Amazon craton along the Laurentian margin, following the original collision with southernmost Laurentia at ca. 1.2 Ga. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper describes tectonic and metamorphic features of Precambrian rocks from the Guaxupe Complex and Varginha Shear Zone (VSZ) near the city of Guaxupe in the southern part of the Sao Francisco Craton, southeastern Brazil. The VSZ separates the metasediments of Araxa Group to the north from the granulites of Guaxupe Complex to the south. The sinistral transcurrent VSZ crosses the entire area striking approximately E-W, bending towards SE in the eastern part. Because of this bend, transpressional movement occurred, facilitating the exhumation of the garnet-rich rocks of the deepest exposed part of the granulite-facies terrane.In the garnet granulites the highest pressure-temperature conditions recorded are approximately 1040 degreesC and 14.4 kbar. The rocks underwent decompression from 14.0 kbar to 8.0 kbar, cooling from 980 degreesC to 710 degreesC, the retrograde path following the boundary between the kyanite and sillimanite stability fields. This interval is interpreted to record the uplift of the lower crustal granulite-facies terrane and re-equilibration during magmatic intrusions. For the felsic granulites an interval of 700-810 degreesC and 8.0-11.5 kbar was attained, also pointing to regional decompression.The granulites of the Guaxupe Complex comprise a medium- to high-pressure lower-crustal terrane, with local occurrences of higher-pressure garnet-rich gneisses, which were uplifted along a transpressional segment of the VSZ. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The vertebrate predators of post-metamorphic anurans were quantified and the predator-prey relationship was investigated by analysing the relative size of invertebrate predators and anurans. More than 100 vertebrate predators were identified (in more than 200 reports) and classified as opportunistic, convenience, temporary specialized and specialized predators. Invertebrate predators were classified as solitary non-venomous, venomous and social foragers according to 333 reviewed reports. Each of these categories of invertebrate predators was compared with the relative size of the anurans, showing an increase in the relative size of the prey when predators used special predatory tactics. The number of species and the number of families of anurans that were preyed upon did not vary with the size of the predator, suggesting that prey selection was not arbitrary and that energetic constraints must be involved in this choice. The relatively low predation pressure upon brachycephalids was related to the presence of some defensive strategies of its species. This compounding review can be used as the foundation for future advances in vertebrate predator-prey interactions.
Resumo:
The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T > 750 degrees C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramatic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events.We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 +/- 2.1 Ma, Chalk Mountain 377.7 +/- 2.5 Ma, Mt. Airy 334 +/- 3 Ma, Stone Mountain 335.6 +/- 1.0 Ma, and Rabun 335.1 +/- 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians.