58 resultados para mass function
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We study the (D) over barN interaction at low energies with a quark model inspired in the QCD Hamiltonian in Coulomb gauge. The model Hamiltonian incorporates a confining Coulomb potential extracted from a self-consistent quasiparticle method for the gluon degrees of freedom, and transverse-gluon hyperfine interaction consistent with a finite gluon propagator in the infrared. Initially a constituent-quark mass function is obtained by solving a gap equation and baryon and meson bound-states are obtained in Fock space using a variational calculation. Next, having obtained the constituent-quark masses and the hadron waves functions, an effective meson-nucleon interaction is derived from a quark-interchange mechanism. This leads to a short range meson-baryon interaction and to describe long-distance physics vector- and scalar-meson exchanges described by effective Lagrangians are incorporated. The derived effective (D) over barN potential is used in a Lippmann-Schwinger equation to obtain phase shifts. The results are compared with a recent similar calculation using the nonrelativistic quark model.
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Potassium fertilization is very important to alfalfa crop in terms of yield, quality and persistence of forage, especially on soils naturally poor K. Thus, to assess the effects of K fertilization in alfalfa production and nutritional status, was carried out an experiment in a greenhouse using samples of a Dystrophic Oxisol medium texture (LV) (0.6 mmol(c) dm(-3) K) and a Dystrophic Ultisol sandy/medium texture (PVA) (2.2 mmol(c) dm(-3) K). A completely randomized design in a factorial arrangement 6 x 2 (six K rates and two soils) was used, with four replications. The K rates used were: 0, 25, 50, 100, 150 and 200 mg kg(-1) K. Potassium fertilization increased K content in soil and shoots. Dry matter production was increased with the K addition. However, in the PVA, this occurred only in the second cut. In LV, potassium fertilization increased N concentration in alfalfa shoots in both cuts. Plants with K concentration around 10 g kg(-1) had typical symptoms of this nutrient deficiency. The K critical levels of K in soil and shoots were 1.8 mmolc dm(-3) and 16.7 g kg(-1), respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we isolated a novel crotamine like protein from the Crotalus durissus cascavella venom by combination of molecular exclusion and analytical reverse phase HPLC. Its primary structure was:YKRCHKKGGHCFPKEKICLPPSSDLGKMDCRWKRK-CCKKGS GK. This protein showed a molecular mass of 4892.89 da that was determined by Matrix Assisted Laser Desorption Ionization Time-of-flight (MALDI-TOF) mass spectrometry. The approximately pI value of this protein was determined in 9.9 by two-dimensional electrophoresis. This crotamine-like protein isolated here and that named as Cro 2 produced skeletal muscle spasm and spastic paralysis in mice similarly to other crotamines like proteins. Cro 2 did not modify the insulin secretion at low glucose concentration (2.8 and 5.6 mM), but at high glucose concentration (16.7 mM) we observed an insulin secretion increasing of 2.7-3.0-fold than to control. The Na+ channel antagonist tetrodoxin (6 mM) decreased glucose and Cro 2-induced insulin secretion. These results suggested that Na+ channel are involved in the insulin secretion. In this article, we also purified some peptide fragment from the treatment of reduced and carboxymethylated Cro 2 (RC-Cro 2) with cyanogen bromide and protease V8 from Staphylococcus aureus. The isolated pancreatic beta-cells were then treated with peptides only at high glucose concentration (16.7 mM), in this condition only two peptides induced insulin secretion. The amino acid sequence homology analysis of the whole crotamine as well as the biologically-active peptide allowed determining the consensus region of the biologically-active crotamine responsible for insulin secretion was KGGHCFPKE and DCRWKWKCCKKGSG.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is well known that glucocorticoids induce peripheral insulin resistance in rodents and humans. Here, we investigated the structural and ultrastructural modifications, as well as the proteins involved in beta-cell function and proliferation, in islets from insulin-resistant rats. Adult male Wistar rats were made insulin resistant by daily administration of dexamethasone (DEX; 1mg/kg, i.p.) for five consecutive days, whilst control (CTL) rats received saline alone. Structure analyses showed a marked hypertrophy of DEX islets with an increase of 1.7-fold in islet mass and of 1.6-fold in islet density compared with CTL islets (P < 0.05). Ultrastructural evaluation of islets revealed an increased amount of secreting organelles, such as endoplasmic reticulum and Golgi apparatus in DEX islets. Mitotic figures were observed in DEX islets at structural and ultrastructural levels. Beta-cell proliferation, evaluated at the immunohistochemical level using anti-PCNA (proliferating cell nuclear antigen), showed an increase in pancreatic beta-cell proliferation of 6.4-fold in DEX islets compared with CTL islets (P < 0.0001). Increases in insulin receptor substrate-2 (IRS-2), phosphorylated-serine-threonine kinase AKT (p-AKT), cyclin D(2) and a decrease in retinoblastoma protein (pRb) levels were observed in DEX islets compared with CTL islets (P < 0.05). Therefore, during the development of insulin resistance, the endocrine pancreas adapts itself increasing beta-cell mass and proliferation, resulting in an amelioration of the functions. The potential mechanisms that underlie these events involve the activation of the IRS-2/AKT pathway and activation of the cell cycle, mediated by cyclin D(2). These adaptations permit the maintenance of glycaemia at near-physiological ranges.
Resumo:
We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.
Resumo:
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
VAMP (variable-mass particle) scenarios, in which the mass of the cold dark matter particles is a function of the scalar field responsible for the present acceleration of the Universe, have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. We find that only a narrow region in parameter space leads to models with viable values for the Hubble constant and dark energy density today. In the allowed region, the dark energy density starts to dominate around the present epoch and consequently such models cannot solve the coincidence problem. We show that the age of the Universe in this scenario is considerably higher than the age for noncoupled dark energy models, and conclude that more precise independent measurements of the age of the Universe would be useful in distinguishing between coupled and noncoupled dark energy models.
Resumo:
We discuss the pure gauge Schwinger-Dyson equation for the gluon propagator in the Landau gauge within an approximation proposed by Mandelstam many years ago. We show that a dynamical gluon mass arises as a solution. This solution is obtained numerically in the full range of momenta that we have considered without the introduction of any ansatz or asymptotic expression in the infrared region. The vertex function that we use follows a prescription formulated by Cornwall to determine the existence of a dynamical gluon mass in the light cone gauge. The renormalization procedure differs from the one proposed by Mandelstam and allows for the possibility of a dynamical gluon mass. Some of the properties of this solution, such as its dependence on A(QCD) and its perturbative scaling behavior are also discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)