30 resultados para marine structural steel
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Residual stresses play an important role in the fatigue lives of structural engineering components. In the case of near surface tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. In both decorative and functional applications, chromium electroplating results in excellent wear and corrosion resistance. However, it is well known that it reduces the fatigue strength of a component. This is due to high tensile internal stresses and microcrack density. Efforts to improve hard chromium properties have increased in recent years. In this study, the effect of a nickel layer sulphamate process, as simple layer and interlayer, on fatigue strength of hard chromium electroplated AISI 4340 steel hardness - HRc 53, was analysed. The analysis was performed by rotating bending fatigue tests on AISI 4340 steel specimens with the following experimental groups: base material, hard chromium electroplated, sulphamate nickel electroplated, sulphamate nickel interlayer on hard chromium electroplated and electroless nickel interlayer on hard chromium electroplated. Results showed a decrease in fatigue strength in coated specimens and that both nickel plating interlayers were responsible for the increase in fatigue life of AISI 4340 chromium electroplated steel. The shot peening pre-treatment was efficient in reducing fatigue loss in the alternatives studied.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work discusses on the structural evaluation of mechanically alloyed and heat-treated Ti-25at%Si powders. The milling process was conducted in a planetary ball mill using stainless steel balls/vials, 200 rpm and ball-to-powder weight ratio of 5:1, whereas the heat treatment was conducted under Ar atmosphere at 1100 C for 4 h. Samples were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectrometry. The Si peaks disappeared after milling for 30h, indicating that the Si atoms were dissolved into the Ti lattice in order to form an extended solid solution. The Ti peaks were broadened and their intensities reduced for longer milling times whereas a halo was formed in Ti-25Si powders milled for 200h suggesting that an amorphous structure was achieved. The crystallite size was decreased with increasing milling times. A large Ti3Si amount was found in mechanically alloyed Ti-25at%Si powders after heating at 1100 degrees C for 4h.
Resumo:
Structures critical to the flight-safety are commonly submitted to several maintenance repairs at the welded joints in order to prolong the in-service life of aircrafts. The aim of this study is to analyze the effects of Tungsten Inert Gas (TIG) welding repair on the structural integrity of the AISI 4130 aeronautical steel by means of experimental fatigue crack growth tests in base-material, heat-affected zone (HAZ) and weld metal. The tests were performed on hot-rolled steel plate specimens, 0.89 mm thick, with load ratio R = 0.1, constant amplitude, at 10 Hz frequency and room temperature. Increase of the fracture resistance was observed in the weld metal but decreasing in the HAZ after repair. The results were associated to microhardness and microstructural changes with the welding sequence. (C) 2010 Published by Elsevier Ltd.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically>30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.
Resumo:
Elemental composition and spectroscopic properties (FT-IR and CP/MAS C-13-NMR) of sedimentary humic substances (HS) from aquatic subtropical environments (a lake, an estuary and two marine sites) are investigated. Humic acids (HA) are relatively richer in nitrogen and in aliphatic chains than fulvic acids (FA) from the same sediments. Conversely, FA are richer in carboxylic groups and in ring polysaccharides than HA. Nitrogen is mostly present as amide groups and for lake and marine HS the FT-IR peaks around 1640 cm(-1) and 1540 cm(-1) identify polypeptides. Estuarine HS exhibit mixed continental-marine influences, these being highly influenced by site location. Overall, the data suggest that aquatic and mixed HS are more aliphatic than has been proposed in current models and also that amide linkages form an important part of their structural configuration.
Resumo:
We describe the design, manufacturing, and testing results of a Nb3Sn superconducting coil in which TiAIV alloys were used instead of stainless steel to reduce the magnetization contribution caused by the heat treatment for the A-15 Nb-3 Sn phase formation that affects the magnetic field homogeneity. Prior to the coil manufacturing several structural materials were studied and evaluated in terms of their mechanical and magnetic properties in as-worked, welded, and heat-treated conditions. The manufacturing process employed the wind-and-react technique followed by vacuum-pressure impregnation(VPI) at 1 MPa atm. The critical steps of the manufacturing process, besides the heat treatment and impregnation, are the wire splicing and joint manufacturing in which copper posts supported by Si3N4 ceramic were used. The coil was tested with and without a background NbTi coil and the results have shown performance exceeding the design quench current confirming the successful coil construction.
Resumo:
This work presents a comparative analysis about the behaviour of pile caps supported by 3 piles subjected to axial loading. Piles with 20 cm and 30 cm diameters were analysed. The main reinforcement was maintained in all the specimens, however, the arrangement of the secondary reinforcement varied. The main reinforcement consisted of steel bars connecting the piles. The secondary reinforcement was made up of: (a) bars going through the piles and through the projection of the column, (b) bars forming a network, and (c) vertical and horizontal stirrups. The main objective was the observation of the pile cap behaviour regarding the cracks and the modes of rupture. The real scale specimens were subjected to experimental tests until failure by rupture. Instruments were placed with the aim to obtain the displacement of the bases, the strains in the main and secondary reinforcement bars, in the compression struts, in the lower and upper nodal zones and in the sides of the caps. None of the caps reached failure by rupture with a load less than 1.12 times the theoretical load. The specimens ruptured due to the cracking of the compression strut and/or the yielding of the reinforcement bars in one direction.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)