39 resultados para machine learning
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious. Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the determination of druggability of gene products.Results: In this paper we propose a machine learning-based computational approach to predict morbid and druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered 65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be morbid and druggable and we showed a good match between these scores and literature data. Finally, we generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating transcription factors and plasma membrane localization are the most important factors to morbidity and druggability, respectively.Conclusions: We were able to demonstrate that network topological features along with tissue expression profile and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity and druggability.
Resumo:
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
Plant phenology has gained importance in the context of global change research, stimulating the development of new technologies for phenological observation. Digital cameras have been successfully used as multi-channel imaging sensors, providing measures of leaf color change information (RGB channels), or leafing phenological changes in plants. We monitored leaf-changing patterns of a cerrado-savanna vegetation by taken daily digital images. We extract RGB channels from digital images and correlated with phenological changes. Our first goals were: (1) to test if the color change information is able to characterize the phenological pattern of a group of species; and (2) to test if individuals from the same functional group may be automatically identified using digital images. In this paper, we present a machine learning approach to detect phenological patterns in the digital images. Our preliminary results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; and (2) different plant species present a different behavior with respect to the color change information. Based on those results, we suggest that individuals from the same functional group might be identified using digital images, and introduce a new tool to help phenology experts in the species identification and location on-the-ground. ©2012 IEEE.
Resumo:
The correct classification of sugar according to its physico-chemical characteristics directly influences the value of the product and its acceptance by the market. This study shows that using an electronic tongue system along with established techniques of supervised learning leads to the correct classification of sugar samples according to their qualities. In this paper, we offer two new real, public and non-encoded sugar datasets whose attributes were automatically collected using an electronic tongue, with and without pH controlling. Moreover, we compare the performance achieved by several established machine learning methods. Our experiments were diligently designed to ensure statistically sound results and they indicate that k-nearest neighbors method outperforms other evaluated classifiers and, hence, it can be used as a good baseline for further comparison. © 2012 IEEE.
Resumo:
Wireless Sensor Networks (WSNs) can be used to monitor hazardous and inaccessible areas. In these situations, the power supply (e.g. battery) of each node cannot be easily replaced. One solution to deal with the limited capacity of current power supplies is to deploy a large number of sensor nodes, since the lifetime and dependability of the network will increase through cooperation among nodes. Applications on WSN may also have other concerns, such as meeting temporal deadlines on message transmissions and maximizing the quality of information. Data fusion is a well-known technique that can be useful for the enhancement of data quality and for the maximization of WSN lifetime. In this paper, we propose an approach that allows the implementation of parallel data fusion techniques in IEEE 802.15.4 networks. One of the main advantages of the proposed approach is that it enables a trade-off between different user-defined metrics through the use of a genetic machine learning algorithm. Simulations and field experiments performed in different communication scenarios highlight significant improvements when compared with, for instance, the Gur Game approach or the implementation of conventional periodic communication techniques over IEEE 802.15.4 networks. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating the development of new technologies for phenological monitoring. Digital cameras or near remote systems have been efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the RGB (Red, Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of plant species. In this scenario, texture information is a great ally for image analysis that has been little used in phenology studies. We monitored leaf-changing patterns of Cerrado savanna vegetation by taking daily digital images. We extract RGB channels from the digital images and correlate them with phenological changes. Additionally, we benefit from the inclusion of textural metrics for quantifying spatial heterogeneity. Our first goals are: (1) to test if color change information is able to characterize the phenological pattern of a group of species; (2) to test if the temporal variation in image texture is useful to distinguish plant species; and (3) to test if individuals from the same species may be automatically identified using digital images. In this paper, we present a machine learning approach based on multiscale classifiers to detect phenological patterns in the digital images. Our results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; (2) different plant species present a different behavior with respect to the color change information; and (3) texture variation along temporal images is promising information for capturing phenological patterns. Based on those results, we suggest that individuals from the same species and functional group might be identified using digital images, and introduce a new tool to help phenology experts in the identification of new individuals from the same species in the image and their location on the ground. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Concept drift is a problem of increasing importance in machine learning and data mining. Data sets under analysis are no longer only static databases, but also data streams in which concepts and data distributions may not be stable over time. However, most learning algorithms produced so far are based on the assumption that data comes from a fixed distribution, so they are not suitable to handle concept drifts. Moreover, some concept drifts applications requires fast response, which means an algorithm must always be (re) trained with the latest available data. But the process of labeling data is usually expensive and/or time consuming when compared to unlabeled data acquisition, thus only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are also based on the assumption that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenge in machine learning. Recently, a particle competition and cooperation approach was used to realize graph-based semi-supervised learning from static data. In this paper, we extend that approach to handle data streams and concept drift. The result is a passive algorithm using a single classifier, which naturally adapts to concept changes, without any explicit drift detection mechanism. Its built-in mechanisms provide a natural way of learning from new data, gradually forgetting older knowledge as older labeled data items became less influent on the classification of newer data items. Some computer simulation are presented, showing the effectiveness of the proposed method.
Resumo:
Due to the increased incidence of skin cancer, computational methods based on intelligent approaches have been developed to aid dermatologists in the diagnosis of skin lesions. This paper proposes a method to classify texture in images, since it is an important feature for the successfully identification of skin lesions. For this is defined a feature vector, with the fractal dimension of images through the box-counting method (BCM), which is used with a SVM to classify the texture of the lesions in to non-irregular or irregular. With the proposed solution, we could obtain an accuracy of 72.84%. © 2012 AISTI.
Resumo:
Semi-supervised learning is applied to classification problems where only a small portion of the data items is labeled. In these cases, the reliability of the labels is a crucial factor, because mislabeled items may propagate wrong labels to a large portion or even the entire data set. This paper aims to address this problem by presenting a graph-based (network-based) semi-supervised learning method, specifically designed to handle data sets with mislabeled samples. The method uses teams of walking particles, with competitive and cooperative behavior, for label propagation in the network constructed from the input data set. The proposed model is nature-inspired and it incorporates some features to make it robust to a considerable amount of mislabeled data items. Computer simulations show the performance of the method in the presence of different percentage of mislabeled data, in networks of different sizes and average node degree. Importantly, these simulations reveals the existence of the critical points of the mislabeled subset size, below which the network is free of wrong label contamination, but above which the mislabeled samples start to propagate their labels to the rest of the network. Moreover, numerical comparisons have been made among the proposed method and other representative graph-based semi-supervised learning methods using both artificial and real-world data sets. Interestingly, the proposed method has increasing better performance than the others as the percentage of mislabeled samples is getting larger. © 2012 IEEE.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Both Semi-Supervised Leaning and Active Learning are techniques used when unlabeled data is abundant, but the process of labeling them is expensive and/or time consuming. In this paper, those two machine learning techniques are combined into a single nature-inspired method. It features particles walking on a network built from the data set, using a unique random-greedy rule to select neighbors to visit. The particles, which have both competitive and cooperative behavior, are created on the network as the result of label queries. They may be created as the algorithm executes and only nodes affected by the new particles have to be updated. Therefore, it saves execution time compared to traditional active learning frameworks, in which the learning algorithm has to be executed several times. The data items to be queried are select based on information extracted from the nodes and particles temporal dynamics. Two different rules for queries are explored in this paper, one of them is based on querying by uncertainty approaches and the other is based on data and labeled nodes distribution. Each of them may perform better than the other according to some data sets peculiarities. Experimental results on some real-world data sets are provided, and the proposed method outperforms the semi-supervised learning method, from which it is derived, in all of them.