36 resultados para lithium
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Quantum mechanics calculations at the ab initio HF/3-21G* level were carried out with Nuclear Magnetic Resonance (NMR) measurements to characterize citric acid and lithium interactions. The results indicate the formation of a tridentate organometallic compound with one lithium and one citric acid molecule and a tridentate and bidentate compound of two lithium atoms and one citric acid molecule. The results are in agreement with the experimental and theoretical data. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
A detector system that can measure X-ray intensity in the mammographic range of 22 to 36 kVp (equivalent photon energies ofthe beam between 11 and 15 keV) is presented. It consists of a lithium mobate detector and a high-sensitivity current-to-voltage converter.
Resumo:
The purpose of this work is to study the Li2O-P2O5 glass using the differential scanning calorimetry (DSC) and x-ray diffraction (XRD) techniques to understand the crystallization process in this glass matrix. To study the glass by DSC, screened samples with different particle sizes to resolve the crystallization peaks were used. Both crystallization peaks were attributed to Li6P6O18 and LiPO3 phases. This evidence was corroborated by XRD analysis on glasses annealed at different temperatures in order to crystallize these phases.
Resumo:
Structural effects of lithium additive on 0.9PMN-0.1PT powders prepared by Ti-modified columbite route were studied. The substitution of Li+ ions for Mg2+ ions in the B-site sub-lattice of 0.9PMN-0.1PT perovskite structure was explained in terms of lead and oxygen vacancies generation originated as consequence of the ionic compensation of negatively charged Li'(Mg) sites. The rise in mass transport as consequence of the increasing of Pb2+ and O2- vacancies produces more agglomerated particles during the powder synthesis and changes the mechanical characteristics between grain and grain boundary of sintered ceramic. The relation between K-m and T-m values, the difference between ionic radii of B cation and the molar volume were used to explain the changes in the relaxor behavior and diffusiveness of phase transition as function of lithium doping, which are corroborated by the results obtained through the ferroelectric characterization.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A potentiometric sensor constructed from a mixture of 25% (m/m) spinel-type manganese oxide (lambda-MnO2), 50% (m/m) graphite powder and 25% (m/m) mineral oil is used for the determination of lithium ions in a flow injection analysis system. Experimental parameters, such as pH of the carrier solution, flow rate, injection sample volume, and selectivity for Li+ against other alkali and alkaline-earth ions and the response time of this sensor were investigated. The sensor response to lithium ions was linear in the concentration range 8.6 x 10(-5) - 1.0 x 10(-2) mol L-1 with a slope 78.9 +/- 0.3 mV dec(-1) over a wide pH range 7 - 10 (Tris buffer), without interference of other alkali and alkaline-earth metals. For a flow rate of 5.0 mL min(-1) and a injection sample volume of 408.6 muL, the relative standard deviation for repeated injections of a 5.0 x 10(-4) mol L-1 lithium ions was 0.3%.
Resumo:
The influence of lithium on the structural characteristics of PMN-PT ceramic was studied. The synthesis of PMN-PT powders using this precursor leads to the formation of high amount of perovskite phase. The insertion of Li(+) ions in B-site affects the microstructure because the rise in mass transport changes the mechanical characteristics of sintered ceramic. Higher values of K(m) and T(m) were gotten when lithium is inserted into perovskite phase. Secondary phase was found when lithium content increase beyond 1 mol%, besides the occurrence of transgranular fractures in sintered ceramic. Also, the additive acts increasing the relaxor behavior.
Resumo:
1. The effects of lithium (Li+) on the concentration-response curves (CRC) to norepinephrine (NE) and acetylcholine (Ach) on the bisected rat vas deferens (RVD) were investigated, as well as its action on the neuronal uptake of [H-3] NE.2. Li+ did not affect the 50% effective concentration (EC(50)) of NE and Ach in the epididymal (EP) portion of the RVD.3. Li+ caused a significant increase of the EC(50) to NE and Ach in the prostatic (PP) portion of the RVD. This shift to the right of the CRC to NE was prevented by the presence of myoinositol.4. Incubation of the PP of the RVD with Li+, increased the neuronal uptake of NE. The simultaneous incubation with myoinositol prevented this increase.5. After the pre-treatment of the rats with 6-hydroxydopamine (6-OHDA), or in the presence of cocaine, Li+ failed to desensitize the PP of the RVD to NE.6. These results suggest that the effect of Li+ on the PP of the RVD occurs mainly at the pre-synaptic level and may be related to the increase of neuronal uptake and to the interference of Li+ on phosphatidylinositol hydrolysis.
Resumo:
Gelation mechanisms of lithium-doped Siloxane-Poly(oxyethylene) (PEO) hybrids containing polymer of two different molecular weight (500 and 1900 g/mol) were investigated through the evolution of the electrical properties during the solgel transition. The results of electrical measurements, performed by in-situ complex impedance spectroscopy, were correlated with the coordination and the dynamical properties of the lithium ions during the process as shown by Li-7 NMR measurements. For both hybrids sols, a decrease of the conductivity is observed at the initial gelation stage, due to the existence of an inverted percolation process consisting of the progressive separation of solvent molecules containing conducting species in isolated islands during the solid network formation. An increase of conductivity occurs at more advanced stages of gelation and aging, attributed to the increasing connectivity between PEO chains promoted by the formation of crosslinks of siloxane particles at their extremities, favoring hopping motions of lithium ions along the chains.