9 resultados para liquids
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Monte Carlo simulation results for pure liquid acetone and water-acetone mixtures calculated in the isothermal and isobaric (NPT) ensemble at T=298K and p=1.0atm are presented. The TIP4P model was used for water and optimized potential for liquid simulation (OPLS) force field parameters used for acetone. The results obtained for the average configurational energy as a function of the mole fraction are in good accord with experimental data. Energy partitioning and co-ordination numbers results calculated for equimolar water-acetone solution are compared to similar data obtained for other water-organic liquid mixtures. These results show an increase in water-water interaction energy and co-ordination numbers when the interaction between water and organic liquid molecules decrease. Distribution functions for pure liquid acetone and water-acetone mixtures are presented. Dipole-dipole angular correlation functions obtained for pure liquid acetone show a predominance of dimers with parallel alignment of dipole moments. Radial distribution functions from water-acetone interaction show characteristic features of hydrogen bonded liquids. Radial and angular distribution functions for water-water correlation calculated in pure water and in equimolar water-acetone mixture are compared, showing very similar features in both systems. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work it is introduced a new approach to calculate the density of liquids in terms of the energies of the acoustic signals. This method is compared to other methods in the time domain (peak-to-peak amplitudes) and frequency domain magnitudes at a single frequency. It is used a measurement cell based on a multiple reflection technique, and it is developed an acoustic model for the cell. Simulations and experiments using several liquids are presented, showing that the energy method a less sensitive to noise than the other techniques. The relative errors in the density are smaller than 0.2% when compared to the values measured with a pycnometer.
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice-versa. The method is based on measuring the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. Viscosity measurements were made in the range from 1 to 3.5MHz at 22.5°C for automotive oil (SAE40) and at 15°C for olive oil. Moreover, measurements of the olive oil were also conducted in the range from 15 to 30°C at 3.5MHz. The experimental results agree with those provided by a rotational viscometer. © 2006 IEEE.
Resumo:
The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N6,2,2,2][N(Tf)2], 1-butyl-3-methylimidazolium hexafluorosphosphate [C4mim][PF6], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C4mpyrr][N(Tf)2], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][N(Tf)2], N-butyl-N-methyl-pyrrolidinium dicyanamide [C4mpyrr][N(NC)2] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P14,6,6,6][FAP] on a platinum microelectrode. In [N6,2,2,2][NTf2] and [P14,6,6,6][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P14,6,6,6][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N6,2,2,2][NTf2] and [P14,6,6,6][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction. © 2009 Elsevier B.V.
Resumo:
The solubility of benzene in 15 imidazolium, pyrrolidinium, pyridinium, and piperidinium ionic liquids has been determined; the resulting, benzene-saturated ionic liquid solutions, also known as liquid clathrates, were examined with (1) H and (19) F nuclear magnetic resonance spectroscopy to try and understand the molecular interactions that control liquid clathrate formation. The results suggest that benzene interacts primarily with the cation of the ionic liquid, and that liquid clathrate formation (and benzene solubility) is controlled by the strength of the cation-anion interactions, that is, the stronger the cation-anion interaction, the lower the benzene solubility. Other factors that were determined to be important in the final amount of benzene in any given liquid clathrate phase included attractive interactions between the anion and benzene (when significant), and larger steric or free volume demands of the ions, both of which lead to greater benzene solubility.