31 resultados para liquid metal diffusion
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this paper, the meshless method is introduced to magnetohydrodynamics. A numerical scheme based on the element-free Galerkin method is used to solve the laminar steady-state two-dimensional fully developed magnetohydrodynamic flow in a rectangular duct. Accurate and convergent solutions are achieved for low to moderately high Hartmann numbers.
Resumo:
A numerical scheme based on the Finite Element Method (FEM) is presented to calculate the full solution of a three-dimensional steady magnetohydrodynamic (MHD) flow with moderately high Hartmann numbers and interaction parameters. An incompressible, viscous and electrically conducting liquid-metal is considered. Assuming a low magnetic Reynolds number, the solution method solves the coupled Navier-Stokes and Maxwell's equations through the use of a penalty function method. Results are presented for Hartmann numbers in the range 10(2)-10(3).
Resumo:
The macrostructure of an alloy solidification in the raw state is of utmost importance due to its influence on mechanical properties. A structure showing columnar grains is generally undesirable in most applications of cast products and grain refining aims to suppress the formation of these grains and get a fine-grained equiaxed structure that improves the supply of liquid metal and the mechanical properties, as yield strength and tensile strength limit, as well as the tendency of formation of hot cracks. The type and size of grains formed are determined by chemical composition, cooling rate and the use of inoculum for grain refining. Titanium and boron are the major refiners in the aluminum industry and can be added to the molten metal in the form of alloys such as Al-Ti, Al-Ti-B or Al-B. In this paper we will discuss the information obtained from cooling curves and first derivative of the cooling curve to obtain the thermal parameters that influence the process of grain refining alloy AA 356.0
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Due to their low cost and high resistance to corrosion, ceramic crucibles can be used for the melting of PBG glasses (PbO-BiO 1.5GaO 1.5). These glasses present good window transmission from ultra-violet to infrared, making their use as optical fibres promising. However, their disadvantage is the high reactivity, leading to the corrosion of different crucibles, including gold and platinum ones. In this work, the corrosion of Al 2O 3, SnO 2 and ZrO 2 crucibles after melting at temperatures varying from 850 to 1000°C, was evaluated by Scanning Electronic Microscopy (SEM) in conjunction with microanalysis by EDS. The lead diffusion profile in the crucible material was obtained. Diffusion coefficients were calculated according to the Fick and Fisher theories. Results indicated that the different crucibles presented similar behaviour: in the region near the interface, diffusion occurs in the volumetric way and in regions away from the interface, diffusion occurs through grain boundary.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
When metals that present bcc crystalline structure receive the addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, they undergo significant changes in their physical properties because they are able to dissolve great amounts of those interstitial elements, and thus form solid solutions. Niobium and most of its alloys possess a bcc crystalline structure and, because Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this study, mechanical spectroscopy (internal friction) measurements were performed on Nb-8.9wt%Ta alloys containing oxygen in solid solution. The experimental results presented complex internal friction spectra. With the addition of substitutional solute, interactions between the two types of solutes (substitutional and interstitial) were observed, considering that the random distribution of the interstitial atoms was affected by the presence of substitutional atoms. Interstitial diffusion coefficients, pre-exponential factors and activation energies were calculated for oxygen in this alloy.
Resumo:
The Ti-15Mo alloy is a promising material for use as a biomaterial because of its excellent corrosion resistance and its good combination of mechanical properties, such as fatigue, hardness, and wears resistance. This alloy has a body-centered predominantly cubic crystalline structure and the addition of interstitial atoms, such as oxygen and nitrogen, strongly alters its mechanical properties. Mechanical spectroscopy is a powerful tool to study the interaction of interstitial elements with the matrix metal or substitutional solutes, providing information such as the distribution and the concentration of interstitial elements. The objective of this paper is to study of the effects of heavy interstitial elements, such as oxygen and nitrogen, on the anelastic properties of the Ti-15Mo alloy by using mechanical spectroscopy measurements. In this study, the diffusion coefficients, pre-exponential factors, and activation energies were calculated for the oxygen in the Ti-15Mo alloy.
Resumo:
Metals that present bcc crystalline structure, when receiving addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, undergo significant changes in their physical properties, being able to dissolve great amounts of those interstitial elements, thus forming solid solutions. Niobium and most of its alloys possess bcc crystalline structure and, as Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this paper, mechanical spectroscopy (internal friction) measurements were performed in Nb-2.0wt%Ti alloys containing nitrogen in solid solution. The experimental results presented complex internal friction spectra and with the addition of substitutional solute, it was observed interactions between the two types of solutes (substitutional and interstitial), considering that the random distribution of the interstitial atoms was affected by the presence of substitutional atoms. Interstitial diffusion coefficients, pre-exponential factors and activation energies were calculated for nitrogen in the Nb-2.0wt%Ti alloys.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The main goal in this work is to conduct a quantitative analysis of the mechanical stir casting process for obtaining particulate metal matrix composites. A combined route of stirring at semi-solid state followed by stirring at liquid state is proposed. A fractional factorial design was developed to investigate the influence and interactions of factors as: time, rotation, initial fraction and particle size, on the incorporated fraction. The best incorporations were obtained with all factors at high levels, as well as that very long stirring periods have no strong influence being particle size and rotation the most important factors on the incorporated fraction. Particle wetting occurs during stirring at semisolid state, highlighting the importance of the interactions between particles and the alloy globularized phase. The role of the alloying element Mg as a wettability-promoting agent is discussed. The shear forces resulting from the stirring system is emphasized and understood as the effect of rotation itself added to the propeller blade geometry.
Resumo:
This work involved the development and application of a new analytical procedure for in-situ characterization of the lability of metal species in aquatic systems by using a system equipped with a diffusion membrane and cellulose organomodified with p-aminobenzoic acid groups (DM-Cell-PAB). To this end, the DM-Cell-PAB system was prepared by adding cellulose organomodified with p-aminobenzoic acid groups (Cell-PAB) to pre-purified cellulose bags. After the DM-Cell-PAB system was sealed, it was examined in the laboratory. The in-situ application involved immersing the DM-Cell-PAB system in two different rivers, enabling us to study the relative lability of metal species (Cu, Cd, Fe, Mn, and Ni) as a function of time and quantity of exchanger. The procedure is simple and opens up a new perspective for understanding environmental phenomena relating to the complexation, transport, stability, and lability of metal species in aquatic systems rich in organic matter.