106 resultados para latex particles
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Blends of polyaniline (PAni) and poly(methyl methacrylate) (PMMA) have been produced using core-shell particle synthesis, which is advantageous because it allows changing surface-related properties of PMMA with relatively small amounts of PAW and without the use of organic solvents. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements indicated that the deposition of pollyaniline seems to alter the regular shape of the primary acrylic latex particles. The coverage of PMMA particles by PAW was confirmed by FTIR measurements, where distinct data were obtained from the transmission and diffuse reflectance modes, since the latter is surface sensitive. The zeta potential, which is also a surface-related property, increased with the contents of PAW, as the shells probably became protonated with PAW in the emeraldine salt form. Coverage with PAW did not affect the thermal bulk properties of the PMMA shells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal stability, thermal decomposition process, residual mass, temperature of glass transition (T-g) and temperature dependence of storage modulus (E'), were determined for latex membranes prepared from six clones of Hevea brasiliensis: IAC 331, IAC 332, IAC 333 and IAC 334 grown at experimental plantations of Instituto Agronomico de Campinas (IAC) in Votuporanga, São Paulo State, Brazil. Latex membranes from GT1 and RRIM 600 Asian matrix clones were used as references. The thermal behavior of latex membranes from genetically improved rubber trees was characterized using thermogravimetry/derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The thermal behavior of latex from clones studied in the present work showed similar features of the clones previously reported (IAC 40, IAC 300, IAC 301, IAC 328, IAC 329 and IAC 330), with mass loss in four consecutive steps, except IAC 333, which showed an additional mass loss step. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The problem of a spinless particle subject to a general mixing of vector and scalar screened Coulomb potentials in a two-dimensional world is analyzed and its bounded solutions are found. Some unusual results, including the existence of a bona fide solitary zero-eigenmode solution, are revealed for the Klein-Gordon equation. The cases of pure vector and scalar potentials, already analyzed in previous works, are obtained as particular cases.
Resumo:
Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and Maxwell-Chern-Simons models. Their scalar nature is highlighted and discussed through a dimensional reduction of four-dimensional electrodynamics with electric and magnetic sources. Some general properties and similarities whether considered in Minkowski or Euclidean space are mentioned. However, by virtue of the structure of the space-time in which they are studied, a number of differences among them occur. Furthermore, we pay attention to some consequences of these objects when they act upon the usual particles. Among other subjects, special attention is given to the study of a Lorentz-violating nonminimal coupling between neutral fermions and the field generated by a monopole alone. In addition, an analogue of the Aharonov-Casher effect is discussed in this framework.
Resumo:
The problem of confinement of spinless particles in 1 + 1 dimensions is approached with a linear potential by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The problem of a spinless particle subject to a general mixing of vector and scalar inversely linear potentials in a two-dimensional world is analyzed. Exact bounded solutions are found in closed form by imposing boundary conditions on the eigenfunctions which ensure that the effective Hamiltonian is Hermitian for all the points of the space. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V-v = V-s + constant. These isospectral problems are solved in the case of squared trigonometric potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfunctions are discussed in some detail. It is revealed that a spin-0 particle is better localized than a spin-1/2 particle when they have the same mass and are subjected to the same potentials.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)