37 resultados para large transportation network
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A method for optimal transmission network expansion planning is presented. The transmission network is modelled as a transportation network. The problem is solved using hierarchical Benders decomposition in which the problem is decomposed into master and slave subproblems. The master subproblem models the investment decisions and is solved using a branch-and-bound algorithm. The slave subproblem models the network operation and is solved using a specialised linear program. Several alternative implementations of the branch-and-bound algorithm have been rested. Special characteristics of the transmission expansion problem have been taken into consideration in these implementations. The methods have been tested on various test systems available in the literature.
Resumo:
Pós-graduação em Comunicação - FAAC
Resumo:
An 8-year-old male Boxer with a severely contaminated open fracture of the left radius and ulna fracture, produced by a helicopter propeller, was treated using bone transport by the Ilizarov method. Extensive diaphyseal bone loss and soft-tissue vascular damage were present. The radius and ulna were stabilised with an Ilizarov ring external fixator. The bone defect was partially shortened and restored by gradual transport of a bone segment created from proximal segments of the radius and ulna. The external fixator was removed 4fi months after the beginning of the latency period, due to instability caused by osteolysis around the wires. A cast was placed for 3 weeks. Although the bone transport had resulted in formation of approximately 4 cm of bone, the antebrachium showed approximately 50% shortening when compared to the contralateral limb. The infection was eradicated, and the dog was able to bear weight on the operated limb when walking.
Resumo:
An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.
Resumo:
The usefulness of the application of heuristic algorithms in the transportation model, first proposed by Garver, is analysed in relation to planning for the expansion of transmission systems. The formulation of the mathematical model and the solution techniques proposed in the specialised literature are analysed in detail. Starting with the constructive heuristic algorithm proposed by Garver, an extension is made to the problem of multistage planning for transmission systems. The quality of the solutions found by heuristic algorithms for the transportation model is analysed, as are applications in problems of planning transmission systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Assigning cells to switches in a cellular mobile network is known as an NP-hard optimization problem. This means that the alternative for the solution of this type of problem is the use of heuristic methods, because they allow the discovery of a good solution in a very satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach and provide good solutions for large scale problems.
Resumo:
This article presents a well-known interior point method (IPM) used to solve problems of linear programming that appear as sub-problems in the solution of the long-term transmission network expansion planning problem. The linear programming problem appears when the transportation model is used, and when there is the intention to solve the planning problem using a constructive heuristic algorithm (CHA), ora branch-and-bound algorithm. This paper shows the application of the IPM in a CHA. A good performance of the IPM was obtained, and then it can be used as tool inside algorithm, used to solve the planning problem. Illustrative tests are shown, using electrical systems known in the specialized literature. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work studies the capability of generalization of Neural Network using vibration based measurement data aiming at operating condition and health monitoring of mechanical systems. The procedure uses the backpropagation algorithm to classify the input patters of a system with different stiffness ratios. It has been investigated a large set of input data, containing various stiffness ratios as well as a reduced set containing only the extreme ones in order to study generalizing capability of the network. This allows to definition of Neural Networks capable to use a reduced set of data during the training phase. Once it is successfully trained, it could identify intermediate failure condition. Several conditions and intensities of damages have been studied by using numerical data. The Neural Network demonstrated a good capacity of generalization for all case. Finally, the proposal was tested with experimental data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A novel constructive heuristic algorithm to the network expansion planning problem is presented the basic idea comes from Garver's work applied to the transportation model, nevertheless the proposed algorithm is for the DC model. Tests results with most known systems in the literature are carried out to show the efficiency of the method.
Resumo:
A comparative study of aggregation error bounds for the generalized transportation problem is presented. A priori and a posteriori error bounds were derived and a computational study was performed to (a) test the correlation between the a priori, the a posteriori, and the actual error and (b) quantify the difference of the error bounds from the actual error. Based on the results we conclude that calculating the a priori error bound can be considered as a useful strategy to select the appropriate aggregation level. The a posteriori error bound provides a good quantitative measure of the actual error.
Resumo:
Aggregation disaggregation is used to reduce the analysis of a large generalized transportation problem to a smaller one. Bounds for the actual difference between the aggregated objective and the original optimal value are used to quantify the error due to aggregation and estimate the quality of the aggregation. The bounds can be calculated either before optimization of the aggregated problem (a priori) or after (a posteriori). Both types of the bounds are derived and numerically compared. A computational experiment was designed to (a) study the correlation between the bounds and the actual error and (b) quantify the difference of the error bounds from the actual error. The experiment shows a significant correlation between some a priori bounds, the a posteriori bounds and the actual error. These preliminary results indicate that calculating the a priori error bound is a useful strategy to select the appropriate aggregation level, since the a priori bound varies in the same way that the actual error does. After the aggregated problem has been selected and optimized, the a posteriori bound provides a good quantitative measure for the error due to aggregation.
Resumo:
A constructive heuristic algorithm to solve the transmission system expansion planning problem is proposed with the aim of circumventing some critical problems of classical heuristic algorithms that employ relaxed mathematical models to calculate a sensitivity index that guides the circuit additions. The proposed heuristic algorithm is in a branch-and-bound algorithm structure, which can be used with any planning model, such as Transportation model, DC model, AC model or Hybrid models. Tests of the proposed algorithm are presented on real Brazilian systems.