66 resultados para lake water level
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The influence of water level variation (flood pulse) on the biomass and chemical composition of the aquatic macrophyte Eichhornia azurea, was investigated in a tropical oxbow lake of the Rio Mogi-Guacu, State of São Paulo, Brazil. The flood pulse causes an increase in total nitrogen content from 0.67 to 1.35 mg/L and total phosphorus content from 10.5 to 101.0 mu g/L of the water. This fertilization, associated with other factors, determines a typical seasonal variation in the biomass and chemical composition of the macrophyte.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The largest losses in mechanical harvesting of peanuts occur during the stage of digging, and its assessment is still incipient in Brazil. Therefore, the aim of this study was to evaluate the quantitative losses and the performance of the tractor-digger-inverter, according to soil water content and plant populations. The experiment was conducted in a completely randomized block design with a factorial scheme 2 x 3, in which the treatments consisted of two soil, water content (19.3 and 24.8%) and three populations of plants (86,111, 127,603 and 141,144 plants ha-1), with four replications. The quantitative digging losses and the set mechanized performance were evaluated. The largest amount of visible and total losses was found in the population of 141.144 plants ha-1 for the 19.3% soil water content. The harvested material flow and the tractor-digger-inverter performance were not influenced by soil water content and plant population. The water content in the pods was higher in 24.8% soil water content only for the population of 86,111 plants ha-1; the yield was higher in the populations of 141.144 and 127.603 plants ha-1, in the 19.3 e 24.8% soil water content, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A descriptive analysis of the responses of plankton from lakes lateral to a river in its mouth zone into a tropical reservoir to water level variations is presented. Three situations were reported: 1) a comparison of species richness and diversity and of algae population abundance in prolonged drought and in periods of connection of lakes to the river, 2) the spatial distribution of abundance and richness of Rotifera species in four isolated water bodies formed by fragmentation of a lateral lake during a period of prolonged drought and in the same areas during a period of integrity as an ecosystem, 3) the variability of total zooplankton and Cladocera densities at the end of the isolation period of a lateral lake and after the recovery of connection with the river and in a year of continuous connection with the lotic ecosystem. Various idiosyncrasies were observed in connected lateral lakes, like the surface hydrologic connectivity, a primary factor in species richness modifcations and a secondary controlling factor of plankton abundance. Underground hydrologic connectivity, through the river[forward arrow] lake water fux during the high-water period and lake [forward arrow] river during drought period, appears to have an important role in richness and abundance variations of planktonic populations in the lake isolated from the river.
Resumo:
Este estudo visou analisar os efeitos da variação do nível hidrométrico na estrutura do fitoplâncton do Rio Paranapanema e de uma lagoa marginal na zona de desembocadura no Reservatório de Jurumirim (SP). As amostragens foram realizadas em duas estações em cada ambiente de julho/2004 a julho/2005. Os maiores valores de riqueza e diversidade foram encontrados na estiagem, enquanto que as maiores densidade e biovolume foram registradas na cheia. A espécie Cryptomonas brasiliensis Castro, C. Bicudo & D. Bicudo (R - estrategista) foi constante ao longo de todo o estudo, sendo dominante, principalmente, no final da estiagem e na enchente, quando os eventos de distúrbios foram mais freqüentes. As diatomáceas foram predominantes quanto à biomassa, representadas, principalmente, por Aulacoseira granulata (Ehrenberg) Simonsem e suas variedades. Conclui-se que, o volume de água acumulada no reservatório à jusante não permite que o pulso hidrológico ocasione um distúrbio que resulte em elevado aumento da diversidade nos ambientes estudados, após a enchente.
Root volume and dry matter of peanut plants as a function of soil bulk density and soil water stress
Resumo:
Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.
Resumo:
In order to evaluate the bean yield under different water table levels as well as the moisture and nitrate distribution in the soil profile, a field experiment was carried out in the experimental area of the College of Agricultural Sciences - UNESP, Botucatu, SP, Brazil. Beans were grown in field lysimeters under five water table depths: 30; 40; 50; 60 and 70 cm. The moisture in the soil profile was determined gravimetrically using samples collected at 10; 20; 30; 40; 50; 60 and 70 cm deep. The water table depths of 30cm and 40cm showed the highest productivities (3,228.4kg.ha-1 and 3,422.1kg.ha-1, respectively), with no statistical differences between them. The highest productivity was related to the two highest water table levels (30 and 40cm), which provided the highest moisture average values on the basis of volume in the soil profile (33.3 e 31%) as well as the consumptive use of water (416 and 396mm). The nitrate content during the bean cycle at the extraction depth of 60cm was below the safe drinking limit of 10mg.1-1 for water table depths of 30; 40; 50 and 60cm, which shows the denitrification efficiency as a way of controlling nitrate pollution in water tables. The management of water table can lead to high levels of bean yield and to a better control of nitrate pollution in underground water.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB