7 resultados para kinin

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kallikrein-kinin system exerts cardioprotective effects against pathological hypertrophy. These effects are modulated mainly via B(2) receptor activation. Chronic physical exercise can induce physiological cardiac hypertrophy characterized by normal organization of cardiac structure. Therefore, the aim of this work was to verify the influence of kinin B(2) receptor deletion on physiological hypertrophy to exercise stimulus. Animals were submitted to swimming practice for 5 min or for 60 min, 5 days a week, during 1 month and several cardiac parameters were evaluated. Results showed no significantly difference in heart weight between both groups, however an increased left ventricle weight and myocyte diameter were observed after the 60 min swimming protocol, which was more pronounced in B(2)(-/-) mice. In addition, sedentary B(2)(-/-) animals presented higher left ventricle mass when compared to wild-type (WT) mice. An increase in capillary density was observed in exercised animals, however the effect was less pronounced in B(2)(-/-) mice. Collagen, a marker of pathological hypertrophy, was increased in B(2)(-/-) mice submitted to swimming protocol, as well as left ventricular thickness, suggesting that these animals do not respond with physiological hypertrophy for this kind of exercise. In conclusion, our data suggest an important role for the kinin B(2) receptor in physiological cardiac hypertrophy. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose Bone resorption induced by interleukin-1β (IL-1β) and tumour necrosis factor (TNF-α) is synergistically potentiated by kinins, partially due to enhanced kinin receptor expression. Inflammation-induced bone resorption can be impaired by IL-4 and IL-13. The aim was to investigate if expression of B1 and B2 kinin receptors can be affected by IL-4 and IL-13. Experimental Approach We examined effects in a human osteoblastic cell line (MG-63), primary human gingival fibroblasts and mouse bones by IL-4 and IL-13 on mRNA and protein expression of the B1 and B2 kinin receptors. We also examined the role of STAT6 by RNA interference and using Stat6-/- mice. Key Results IL-4 and IL-13 decreased the mRNA expression of B1 and B2 kinin receptors induced by either IL-1β or TNF-α in MG-63 cells, intact mouse calvarial bones or primary human gingival fibroblasts. The burst of intracellular calcium induced by either bradykinin (B2 agonist) or des-Arg10-Lys-bradykinin (B1 agonist) in gingival fibroblasts pretreated with IL-1β was impaired by IL-4. Similarly, the increased binding of B1 and B2 ligands induced by IL-1β was decreased by IL-4. In calvarial bones from Stat6-deficient mice, and in fibroblasts in which STAT6 was knocked down by siRNA, the effect of IL-4 was decreased. Conclusions and Implications These data show, for the first time, that IL-4 and IL-13 decrease kinin receptors in a STAT6-dependent mechanism, which can be one important mechanism by which these cytokines exert their anti-inflammatory effects and impair bone resorption. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incubation of heat-denatured plasma from the rattlesnake Crotalus atrox with trypsin generated a bradykinin (BK) that contained two amino acid substitutions (Arg(1) --> Val and Ser(6) --> Thr) compared with mammalian BK. Bolus intra-arterial injections of synthetic rattlesnake BK (0.01-10 nmol/kg) into the anesthetized rattlesnake, Crotalus durissus terrificus, produced a pronounced and concentration-dependent increase in systemic vascular conductance (Gsys). This caused a fall in systemic arterial blood pressure (Psys) and an increase in blood flow. Heart rate and stroke volume also increased. This primary response was followed by a significant rise in Psys and pronounced tachycardia (secondary response). Pretreatment with N-G-nitro-L-arginine methyl ester reduced the NK-induced systemic vasodilatation, indicating that the effect is mediated through increased NO synthesis. The tachycardia associated with the late primary and secondary response to BK was abolished with propranolol and the systemic vasodilatation produced in the primary phase was also significantly attenuated by pretreatment, indicating that the responses are caused, at least in part, by release of cathecholamines and subsequent stimulation of beta-adrenergic receptors. In contrast, the pulmonary circulation was relatively unresponsive to BK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paw edema was induced in male Wistar rats (200-250 g) by intraplantar (ipl) administration of 2.5 mu g endotoxin (Etx). Etx, like carrageenin, produced two distinct edema formation phases, an early phase (75 min) followed by a late phase (7 h). We showed that the edema formation in the early phase was antagonized by dipyrone (80 mg/kg, ip) and indomethacin (1 mg/kg, ip) by 52% and 55%, respectively, and that the late phase was resistant to these drugs. These results suggest that in the early phase prostaglandins appear to be involved in the process. However, the activation of the kinin cascade leading to the release of other mediators may be involved in the increase of edema in the late phase. To test this hypothesis, we investigated whether the release of nitric oxide (NO) is involved in the mechanism of endotoxin-induced rat paw edema during the late phase, using N omega-nitro-L-arginine methyl ester (L-NAME) (50 mu g, ipl) as inhibitor of NO synthase and L-arginine (1 mg, ipl) as substrate of NO synthase. The paw edema induced by Etx was inhibited by L-NAME by 56% and increased by L-arginine by 81%. Furthermore, L-arginine given in combination with L-NAME completely reversed the inhibition of Etx-induced edema produced by L-NAME. These results support the hypothesis that in the late phase NO production is associated with the edema evoked by Etx.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation of pre-kininogenin to kininogenin (pre-kallikrein to kallikrein) is one of the steps in the series of reactions of a complex system, linked also to fibrinolysis and coagulation, that leads to kinin release in plasma (See Cochrane et al., 1976; Wuepper, 1976; Kaplan et al., 1976; Kaplan et al., 1976). For human plasma, a test using kaolin as activator and measuring kallikrein activity with the chromogenic substrate Chromozym PK (Nα-benzoyl-prolyl-phenylalanyl-arginyl-nitroanilide, Pentapharm, Basle) is routinely employed. The purpose of this paper is to further study the mechanism of this activation, by means of different activators and using as inhibitor hexadimethrine bromide (Polybrene). Besides kaolin, sulfated polysaccharides, such as heparin and cellulose sulfate are able to activate pre-kininogenin to kininogenin. Hexadimethrine as expected, inhibited the activation by heparin and also that by cellulose sulfate. The activation by kaolin however followed a different pattern suggesting, at least partially, a different mode of action of this activator. © 1979.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When searching for prospective novel peptides, it is difficult to determine the biological activity of a peptide based only on its sequence. The trial and error approach is generally laborious, expensive and time consuming due to the large number of different experimental setups required to cover a reasonable number of biological assays. To simulate a virtual model for Hymenoptera insects, 166 peptides were selected from the venoms and hemolymphs of wasps, bees and ants and applied to a mathematical model of multivariate analysis, with nine different chemometric components: GRAVY, aliphaticity index, number of disulfide bonds, total residues, net charge, pI value, Boman index, percentage of alpha helix, and flexibility prediction. Principal component analysis (PCA) with non-linear iterative projections by alternating least-squares (NIPALS) algorithm was performed, without including any information about the biological activity of the peptides. This analysis permitted the grouping of peptides in a way that strongly correlated to the biological function of the peptides. Six different groupings were observed, which seemed to correspond to the following groups: chemotactic peptides, mastoparans, tachykinins, kinins, antibiotic peptides, and a group of long peptides with one or two disulfide bonds and with biological activities that are not yet clearly defined. The partial overlap between the mastoparans group and the chemotactic peptides, tachykinins, kinins and antibiotic peptides in the PCA score plot may be used to explain the frequent reports in the literature about the multifunctionality of some of these peptides. The mathematical model used in the present investigation can be used to predict the biological activities of novel peptides in this system, and it may also be easily applied to other biological systems. © 2011 Elsevier Inc.