9 resultados para ketanserin
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Estudou-se a eficácia do uso tópico de ketanserina como promotor da cicatrização de feridas cutâneas induzidas em equinos. As feridas foram produzidas em ambos os metâmeros na região da garupa de oito cavalos adultos, em formato quadrangular, medindo cinco centímetros de lado. Aleatoriamente um dos metâmeros foi escolhido como tratado, permanecendo o contralateral como controle. As lesões do grupocontrole foram lavadas somente com água e detergente neutro e no grupo tratado foi realizado o mesmo procedimento seguido de aplicação tópica de ketanserina. A evolução macroscópica e microscópica do processo cicatricial foi avaliada e a área de cada ferida determinada no decorrer do período experimental. Não foram verificadas diferenças significativas entre as feridas do grupo-controle e do grupo tratado com ketanserina durante 56 dias de avaliação.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is widely acknowledged that the indoleamine neurotransmitter serotonin (5-HT) plays a dual role in the regulation of anxiety, a role that in part depends upon neuroanatomical locus of action. Thus, whereas stimulation of 5-HT1A or 5-HT2 receptors in the limbic forebrain (amygdala, hippocampus) enhances anxiety-like responding in rodents, activation of corresponding receptor populations in the midbrain periaqueductal grey (PAG) more often than not reduce anxiety-like behaviour. The present study specifically concerns the anxiety-modulating influence of 5-HT2 receptors within the mouse PAG. Experiment 1 assessed the effects of intra-PAG infusions of the 5-HT2B/2C receptor agonist mCPP (0, 0.03, 0.1 or 0.3 nmol/0.1 mu l) on the behaviour of mice exposed to the elevated plus-maze. As mCPP acts preferentially at 5-HT2B and 5-HT2C receptors, Experiment 2 investigated its effects in animals pretreated with ketanserin, a preferential 5-HT2A/2C receptor antagonist. In both cases, test sessions were videotaped and subsequently, scored for anxiety-like behaviour (e.g., percentage of open arm entries and percentage of open arm time) as well as general locomotor activity (closed arm entries). The results of Experiment I showed that mCPP microinfusions (0.03 and 0.1 nmol) into the PAG of mice decreased behavioural indices of anxiety without significantly altering general activity measures. In Experiment 2, the anxiolytic-like profile of intra-PAG mCPP (0.03 nmol) was substantially attenuated by intra-PAG pretreatment with an intrinsically inactive dose of the preferential 5-HT2A/2C receptor antagonist, ketanserin (10 nmol/0.1 mu l). Together, these data suggest that 5HT(2C) receptor populations within the midbrain PAG play an inhibitory role in plus-maze anxiety in mice. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present study investigated the role of several 5-HT receptor subtypes in the lateral parabrachial nucleus (LPBN) in the control of sodium appetite (i.e. NaCl consumption). Male Holtzman rats had cannulas implanted bilaterally into the LPBN for the injection of 5-HT receptor agonists and antagonists in conjunction with either acute fluid depletion or 24-h sodium depletion. Following these treatments, access to 0.3 M NaCl was provided and the intakes of saline and water were measured for the next 2 h. Bilateral injections of the 5-HT2A receptor antagonist, ketanserin or the 5-HT2C receptor antagonist, mianserin into the LPBN increased 0.3 M NaCl intake without affecting water intake induced by acute fluid-depletion. Bilateral injections of the 5-HT2B receptor agonist, BW723C86 hydrochloride, had no effect on 0.3 M NaCl or water intake under these conditions. Treatment of the LPBN with the 5-HT2B/2C receptor agonist, 2-(2-methyl-4-clorophenoxy) propanoic acid (mCPP) caused dose-related reductions in 0.3 M NaCl intake after 24 h sodium depletion. The effects of mCPP were prevented by pretreating the LPBN with the 5-HT2B/2C receptor antagonist, SDZSER082. Activation of 5-HT3 receptors by the receptor agonist, 1-phenylbiguanicle (PBG) caused dose-related increases in 0.3 M NaCl intake. Pretreatment of the LPBN with the 5-HT3 receptor antagonist, 1-methyl-N-[8-methyl-8-azabicyclo (3.2.1)-oct-3-yl]-1H-indazole-3-carboxamide (LY-278,584) abolished the effects of PBG, but LY-278,584 had no effects on sodium or water intake when injected by itself. PBG injected into the LPBN did not alter intake of palatable 0.06 M sucrose in fluid replete rats. The results suggest that activation of the 5-HT2A and 5-HT2C receptor subtypes inhibits sodium ingestion. In contrast, activation of the 5-HT3 receptor subtype increases sodium ingestion. Therefore, multiple serotonergic receptor subtypes in the LPBN are implicated in the control of sodium intake, sometimes by mediating opposite effects of 5-HT. The results provide new information concerning the control of sodium intake by LPBN mechanisms. (C) 2007 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study was aimed at testing the hypothesis that serotoninergic receptors in the locus coeruleus (LC) play a role in bacterial lipopolysaccharide-induced fever. To this end, 5-HT1A (WAY-100635; 3 mu g/100 nL) and 5-HT2A (ketanserin; 2 mu g/100 nL) antagonists were microinjected into the LC and body temperature was monitored by biotelemetry. Intra-LC microinjections of ketanserin or WAY-100635 caused no change in body temperature of euthermic animals. 5-HT2A antagonism abolished the first phase of the lipopolysaccharide-induced fever. Taken together, these results indicate that serotonin acting on 5-HT2A receptors in the LC mediates the first phase of the febrile response, whereas 5-HT1A receptors are not involved in the lipopolysaccharide-induced fever.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia.Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2).Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea.Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.