5 resultados para ion mobility

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The University of British Columbia (UBC) began performing piezocone penetration tests (CPTU) with electrical resistivity measurements (RCPTU) in 1989. Since then, RCPTU research at UBC has focused on obtaining geo-environmental parameters such as fluid resistivity and soil engineering properties such as porosity and degree of saturation from measurements of bulk soil electrical resistivity using the empirical relationship proposed by Archie (1942). Within this framework, the paper illustrates and discusses important design and calibration issues for resistivity modules such as the use of isolated circuitry to achieve linear calibrations over large ranges of resistivity. The suitability of RCPTU measurements for determination of geo-environmental and geotechnical parameters are assessed using typical ranges of soil and groundwater properties and methods of isolating individual factors for study are discussed. Illustrative examples of RCPTU research efforts including the environmental characterization of mine tailings, delineation of saline water intrusions in fresh water aquifers and the quality control of geotechnical ground densification are presented throughout the text. It is shown that groundwater temperature and hence ion mobility is not significantly altered by frictional heat generated during piezocone penetration and that ratio-based approaches to monitoring soil porosity can be used to eliminate the requirement for extensive groundwater sampling programs. Lastly, it is shown that RCPTU measurements above the water table can only be made using resistivity modules that are stable over a large range of resistivities and that such measurements are the most difficult to interpret because of grain surface conduction effects and generally unknown fluid resistivities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vesicles prepared with synthetic amphiphiles (dioctadecyldimethylammonium bromide and chloride, dihexadecyl phosphate and its sodium salt) were obtained by sonication, ethanol injections, and chloroform injections. The hydrodynamic diameter of vesicles (Dh), estimated from the diffusivity measured by quasielastic light scattering, ranged from 230 to 3000 Å. The electrophoretic mobility (Um) was measured by free-flow electrophoresis. The zeta potential (ζ) and the degree of counterion dissociation (α) of the vesicles were calculated from Um and conductivity data, α decreased with increasing Dh of the vesicles, probably due to the decreasing headgroup area and the increasing counterion association needed to relax the surface electrostatic potential. The electrophoretic mobility was also calculated (Uc) according to an impenetrable, nonconducting sphere model with a spherically symmetric charge distribution approximation. Within the limits of the experimental error(s) of the (different) methods employed and the assumptions made in the calculations, the fact that the Um/Uc ratio ranged from 1.3 to 7.5 was considered to be a good agreement between the calculated and the experimental values. © 1990 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commercial polyvinylchloride (PVC) sheets were treated by plasma immersion ion implantation, PIII. Samples were immersed in argon glow discharges and biased with 25 kV negative pulses. Exposure time to the bombardment plasma changed from 900 to 10,800 s. Through contact angle measurements, the effect of the exposure time on the PVC wettability was investigated. Independent of t, all samples presented contact angles, theta, equal to zero after the treatment. However, in some cases, surface hydrophilization was not stable, as revealed by the temporal evolution of theta. Samples bombarded for shorter periods recovered partially or totally the hydrophobic character while the one exposed for the longest time stayed highly hydrophilic. These modifications are ascribed to the Cl loss and O incorporation as shown by XPS measurements. Furthermore, the mobility of surface polar groups and the variation in the cross-linking degree can also affect the PVC wettability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid organic-inorganic ionic conductors, also called ormolytes, were obtained by dissolution of LiClO4 into silica/poly(ethylene glycol) matrices. Solid-state nuclear magnetic resonance (NMR) was used to probe the inorganic phase structure (Si-29) and the effects of the temperature and composition on the dynamic behavior of the ionic species (Li-7) and the polymer chains (H-1 and C-13). The NMR results between -100 and +90 degrees C show a strong correlation with ionic conductivity and differential scanning calorimetry experiments. The results also demonstrate that the cation mobility is assisted by segmental motion of the polymer, which is in agreement with the results previously reported for pure poly(ethylene oxide), PEG, electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass structure and fluorine motion dynamics are investigated in lead-cadmium fluorgermanate glasses by means of differential scanning calorimetry, Raman scattering, x-ray absorption (EXAFS), electrical conductivity (EC), and F-19 nuclear magnetic resonance (NMR) techniques. Glasses with composition 60PbGeO(3)-xPbF(2)-yCdF(2) (in mol %), with x+y=40 and x=10, 20, 30, 40, are studied. Addition of metal fluorides to the base PbGeO3 glass leads to a decrease of the glass transition temperature (T-g) and to an enhancement of the ionic conductivity properties. Raman and EXAFS data analysis suggest that metagermanate chains form the basic structural feature of these glasses. The NMR study leads to the conclusion that the F-F distances are similar to those found in pure crystalline phases. Experimental results suggest the existence of a heterogeneous glass structure at the molecular scale, which can be described by fluorine rich regions permeating the metagermanate chains. The temperature dependence of the NMR line shapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluorine mobility in these systems. (C) 2004 American Institute of Physics.