27 resultados para input parameter value recommendation

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, by using the Poincare compactification in R(3) we make a global analysis of the Lorenz system, including the complete description of its dynamic behavior on the sphere at infinity. Combining analytical and numerical techniques we show that for the parameter value b = 0 the system presents an infinite set of singularly degenerate heteroclinic cycles, which consist of invariant sets formed by a line of equilibria together with heteroclinic orbits connecting two of the equilibria. The dynamical consequences related to the existence of such cycles are discussed. In particular a possibly new mechanism behind the creation of Lorenz-like chaotic attractors, consisting of the change in the stability index of the saddle at the origin as the parameter b crosses the null value, is proposed. Based on the knowledge of this mechanism we have numerically found chaotic attractors for the Lorenz system in the case of small b > 0, so nearby the singularly degenerate heteroclinic cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes a novel neural model to electrical load forecasting in transformers. The network acts as identifier of structural features to forecast process. So that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through load data extracted from a Brazilian Electric Utility taking into account time, current, tension, active power in the three phases of the system. The results obtained in the simulations show that the developed technique can be used as an alternative tool to become more appropriate for planning of electric power systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate identification of the nitrogen content in plants is extremely important since it involves economic aspects and environmental impacts, Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification in plants involves a lot of non-linear parameters and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought SPAD index using artificial neural networks (ANN). The network acts as identifier of relationships among, crop varieties, fertilizer treatments, type of leaf and nitrogen content in the plants (target). So, nitrogen content can be generalized and estimated and from an input parameter set. This approach can form the basis for development of an accurate real time system to predict nitrogen content in plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate identification of features of dynamical grounding systems are extremely important to define the operational safety and proper functioning of electric power systems. Several experimental tests and theoretical investigations have been carried out to obtain characteristics and parameters associated with the technique of grounding. The grounding system involves a lot of non-linear parameters. This paper describes a novel approach for mapping characteristics of dynamical grounding systems using artificial neural networks. The network acts as identifier of structural features of the grounding processes. So that output parameters can be estimated and generalized from an input parameter set. The results obtained by the network are compared with other approaches also used to model grounding systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate identification of the nitrogen content in crop plants is extremely important since it involves economic aspects and environmental impacts. Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification involves a lot of nonlinear parametes and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought spectral reflectance of plant leaves using artificial neural networks. The network acts as identifier of relationships among pH of soil, fertilizer treatment, spectral reflectance and nitrogen content in the plants. So, nitrogen content can be estimated and generalized from an input parameter set. This approach can be form the basis for development of an accurate real time nitrogen applicator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy flow, dE/d eta, is studied at large pseudorapidities in proton-proton collisions at the LHC, for centre-of-mass energies of 0.9 and 7 TeV. The measurements are made using the CMS detector in the pseudorapidity range 3:15 < vertical bar eta vertical bar < 4.9, for both minimum-bias events and events with at least two high-momentum jets. The data are compared to various pp Monte Carlo event generators whose theoretical models and input parameter values are sensitive to the energy-flow measurements. Inclusion of multiple-parton interactions in the Monte Carlo event generators is found to improve the description of the energy-flow measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes a novel neural model to estimate electrical losses in transformer during the manufacturing phase. The network acts as an identifier of structural features on electrical loss process, so that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through experimental data taking into account core losses, copper losses, resistance, current and temperature. The results obtained in the simulations have shown that the developed technique can be used as an alternative tool to make the analysis of electrical losses on distribution transformer more appropriate regarding to manufacturing process. Thus, this research has led to an improvement on the rational use of energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a novel approach for mapping lightning models using artificial neural networks. The networks acts as identifier of structural features of the lightning models so that output parameters can be estimated and generalized from an input parameter set. Simulation examples are presented to validate the proposed approach. More specifically, the neural networks are used to compute electrical field intensity and critical disruptive voltage taking into account several atmospheric and structural factors, such as pressure, temperature, humidity, distance between phases, height of bus bars, and wave forms. A comparative analysis with other approaches is also provided to illustrate this new methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the Priestley-Taylor model for evapotranspiration in different grown stages of a bean crop. Priestley and Taylor derived a practical Formulation for energy partitioning between the sensible and latent heat fluxes through the a parameter. Bowen ratio energy balance (BREB) was carried out for daily sensible and latent heat flux estimations in three different crop stages. Mean daily values of Priestley-Taylor a parameter were determined for eleven days during the crop cycle. Diurnal variation patterns of a are presented for the growing, flowering and graining periods. The mean values of 1.13 +/- 0.33, 1.26 +/- 0.74, 1.22 +/- 0.55 were obtained for a day in the growing, in the flowering and for graining periods, respectively. Eleven days values of a are shown and gave a mean value of 1.23 +/- 0.10 which agree on the reported literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of the variables number of recipients, synchronization protocol, reproductive efficiency indicators and pregnancy cost, in the economic effectiveness of in vivo and in vitro bovine embryo production. A simulation application was elaborated to allow the user to insert the input variable parameters. A basic scenario, from the efficiency traditional rates of in vivo (ET) and in vitro production (IVP) techniques of bovine embryos, was introduced in the software as a criterion to compare the results. This software was able to reproduce both ET and IVP scenarios. The embryo production was simulated through stochastic simulation. The optimal number of recipients using sensitivity analysis was determined. The net present value and cost per pregnancy were used as a decision parameter. The synchronization for fixed-time embryo transfer decreased the recipient idleness and, consequently, the final cost of pregnancy, in comparison to the traditional methodology. Foetal sexing must be associated to IVP of bovine embryos. In addition, the optimal recipient number per donor is variable and depends on data inserted in the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)