58 resultados para in vivo glucose uptake
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Water contaminants have a high potential risk for the health of populations. Protection from toxic effects of environmental water pollutants primarily involves considering the mechanism of low level toxicity and likely biological effects in organisms who live in these polluted waters. The biomarkers assessment of oxidative stress and metabolic alterations to cadmium exposure were evaluated in Nile tilapia, Oreochromis niloticus. The fish were exposed to 0.35, 0.75, 1.5, and 3.0 mg/l concentrations of Cd2+ (CdCl2) in water for 60 days. Fish that survived cadmium exposure showed a metabolic shift and a compensatory development for maintenance of the body weight gain. We observed a decreased glycogen content and decreased glucose uptake in white muscle. Lactate dehydrogenase (LDH) and creatine phosphokinase (CK) activities were also decreased, indicating that the glycolytic capacity was decreased in this tissue. No alterations were observed in total protein content in white muscle due to cadmium exposure suggesting a metabolic shift of carbohydrate metabolism to maintenance of the muscle protein reserve. There was an increase in glucose uptake, CK increased activity, and a clear increase of LDH activity in red muscle of fish with cadmium exposure. Since no alterations were observed in lipoperoxide concentration, while antioxidant enzymes glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were changed in the liver and the red and white muscle of fish with cadmium exposure, we can conclude that oxygen free radicals are produced as a mediator of cadmium toxicity. Resistance development is related with increased activities of antioxidant enzymes, which were important in the protection against cadmium damage, inhibiting lipoperoxide formation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Different procedures for obtaining a needle biosensor for the determination of glucose to be inserted subcutaneously in vivo, have been compared. Platinum wires with a diameter of 75 mum, teflon-coated were inserted in hypodermic needles and fixed with a two-component epoxy resin. Using a dip-coating procedure, several layers were deposited on electrodes. The first coating was cellulose acetate, the second was immobilized glucose oxidase (GOD) mixed with bovine serum albumin (BSA) and glutaraldheyde, the third coating was a polyurethane coating obtained with commercially available products. A large number of electrodes have been tried and statistically evaluated but they seem to be affected by poor reproducibility evidenced by a large spreading in successive calibration curves. Then, the polyurethane coating has been replaced by a thin polycarbonate membrane salinized and fixed on the tip of the needle. Reproducible results were achieved and first results of in vivo measurements on rabbits are reported.
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca2 2+ signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca2 2+signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally,weexplored the status of Ca2 2+-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase Cα as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the β-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. Copyright © 2010 by The Endocrine Society.
Resumo:
Oocyte-secreted factors (OSFs) regulate differentiation of cumulus cells and are of pivotal relevance for fertility. Bone morphogenetic protein 15 (BMP15) and fibroblast growth factor 10 (FGF10) are OSFs and enhance oocyte competence by unknown mechanisms. We tested the hypothesis that BMP15 and FGF10, alone or combined in the maturation medium, enhance cumulus expansion and expression of genes in the preovulatory cascade and regulate glucose metabolism favouring hyaluronic acid production in bovine cumulus-oocyte complexes (COCs). BMP15 or FGF10 increased the percentage of fully expanded COCs, but the combination did not further stimulate it. BMP15 increased cumulus cell levels of mRNA encoding a disintegrin and metalloprotease 10 (ADAM10), ADAM17, amphiregulin (AREG), and epiregulin (EREG) at 12 h of culture and of prostaglandin (PG)-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3) and tumor necrosis factor alpha-induced protein 6 (TNFAIP6 (TSG6)) at 22 h of culture. FGF10 did not alter the expression of epidermal growth factor-like factors but enhanced the mRNA expression of PTGS2 at 4 h, PTX3 at 12 h, and TNFAIP6 at 22 h. FGF10 and BMP15 stimulated glucose consumption by cumulus cells but did not affect lactate production or levels of mRNA encoding glycolytic enzymes phosphofructokinase and lactate dehydrogenase A. Each growth factor increased mRNA encoding glucosamine:fructose-6-PO4 transaminases, key enzymes in the hexosamine pathway leading to hyaluronic acid production, and BMP15 also stimulated hyaluronan synthase 2 (HAS2) mRNA expression. This study provides evidence that BMP15 and FGF10 stimulate expansion of in vitro-matured bovine COCs by driving glucose metabolism toward hyaluronic acid production and controlling the expression of genes in the ovulatory cascade, the first acting upon ADAM10, ADAM17, AREG, and EREG and the second on downstream genes, particularly PTGS2. © 2013 Society for Reproduction and Fertility.
Glucose Uptake by Skeletal Muscle in Neonatal Alloxan Rats After Intermittent or Continuous Training
Glucose Uptake by Skeletal Muscle in Neonatal Alloxan Rats After Intermittent or Continuous Training
Resumo:
The effects of dexamethasone (Dex) on the metabolic parameters, peripheral insulin, and glucose sensitivity in vivo as well as on islet function ex vivo of rats submitted to low-protein diet were analyzed. Dexamethasone (1.0 mg/kg body weight) was administered intraperitoneally daily to adult Wistar rats fed on a normal-protein diet or low-protein diet (LPD) for 5 days, whereas control rats fed on a normal-protein diet or low-protein diet (LP) received saline alone. At the end of the experimental period, LP rats showed a significant reduction in serum insulin, total serum protein, and serum albumin levels compared with rats fed on a normal-protein diet (P < .05). All these parameters tended to be normalized in LPD rats (P < .05); furthermore, these rats exhibited increased serum glucose and nonesterified fatty acid levels compared with LP rats (P < .05). Rats submitted to the low-protein diet demonstrated normal peripheral glucose sensitivity and improved peripheral insulin sensitivity, which was reversed by Dex treatment. A reduced area of islets from LP rats was partially recovered in LPD rats (P < .05). At 16.7 mmol/L glucose, insulin secretion from LPD islets was also partially recovered and was significantly higher than that from LP islets (P < .05). In conclusion, induction of insulin resistance by Dex treatment reverses most of the metabolic alterations in rats submitted to a low-protein diet. In addition, several islet functions were also improved by Dex, confirming the plasticity of pancreatic islets in adverse conditions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A study was made to compare dry matter, crude protein and gross energy digestibility of corn silage, associated to concentrate, through in vitro and in vivo digestion techniques. A completely randomized design was used, with two treatments and nine replications, involving three assays. The in vivo digestion assay was conducted with 12 Holstein heifers, on a 24 h permanent sample collection. The in vitro digestion assay was achieved with three collection methods: manual (M), vacuum pump (VP) and nasoesophagic (N). The collection methods VP and M can he used to determine the dry matter digestibility, instead of in vivo method, for the present study ration. The digestion methods influenced the DM, CP and GE digestibility for the studied ration.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)