2 resultados para imaging spectrometer

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

SAOZ (Systeme d'Analyse par Observations Zenithales) is a ground-based UV-Visible zenith-sky spectrometer installed between 1988 and 1995 at a number of NDSC stations at various latitudes on the globe. The instrument is providing ozone and NO2 vertical columns at sunrise and sunset using the Differential Optical Absorption Spectroscopy (DOAS) technique in the visible spectral range. The ERS-2 GOME Ozone Monitoring Experiment (GOME) in 1995 was the first satellite mission to provide a global picture of atmospheric NO 2 with reasonable spatial and temporal resolution. It was then followed by SCanning ImAging spectroMeter for Atmospheric ChartographY (SCIAMACHY) onboard ENVISAT in 2002, and Ozone Monitoring Instrument (OMI) onboard EOS-AURA in 2004, with a similar capacity to monitor total NO 2. All these instruments are nadir viewing mapping spectrometers, applying the DOAS technique in the visible for deriving the NO2 total column. Here we present the results of NO2 long-term comparisons between GOME and SAOZ for the whole period of GOME operation since 1995 at all latitudes - tropics, mid-latitudes and polar regions - in both hemispheres. Comparisons are also shown with the most recently available SCIAMACHY and OMI data in 2004-2005. Overall, the daytime satellite measurements (around noon) are found consistent with sunrise ground-based data, with an average smaller difference at the tropics and mid-latitudes than in the polar areas in the summer. The agreement is even improved after correcting for the NO2 photochemical change between sunrise and the satellite overpass using a box model. However, some seasonal dependence of the difference between ground-based and satellite total NO2 still remains, related to the accuracy of photochemical simulations and the set of NO2 air mass factors used in the retrievals of both systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently the study of important molecular compounds present in low abundance in some tissues has been a challenge for proteomic analysis classic. An analysis requires more exploratory investigation of small regions of a tissue or a group of cells. MALDI Imaging Technology (MSI) is an application of mass spectrometry facing the chemical analysis of intact tissues. Thus, advances in mass spectrometry MALDI being obtained by the integration of histology, the best methods and automation are the main tools of data analysis. This tool has become essential to analyze the spatial distribution of peptides and proteins throughout the tissue sections, providing an enormous amount of data with minimum sample preparation. Thus, the aim of this study was to develop the technique of MALDI Imaging using tissue from glioblastoma multiforme (GBM), a form of most common malignant tumor in the brain. For this we used the printer chemical ChIP-1000 (Chemical Inkjet Printer, Shimadzu) and mass spectrometer type Maldi-ToF-ToF (Axima Performance, Shimadzu), a search of the identifications were performed in databases such as SwissProt. We identified more than forty proteins with diverse functions such as proteins F-actin-capping and Thymosin to the structure and organization cellular and proteins such several Tumor necrosis factor receptor development-related pathology. The development of this technique will permit to carry-out proteomic analysis directly into the tissue, enabling earlier diagnosis of diseases, as well as the identification and characterization of potential biomarkers of disease.