163 resultados para hydroxyl ion

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The release and diffusion of hydroxyl ions (OH-) of calcium hydroxide (Ca(OH)2)-based intracanal medications may be affected by the association with other substances. The aim of this study was to evaluate the diffusion of OH- ions through root dentin by the medications: G1, Ca(OH)2/saline; G2, Calen; G3, Calen/camphorated p-monochlorophenol (CMCP); and G4, Calen/0.4% chlorhexidine (CHX). Root canals from bovine teeth were prepared in a standardized manner. A cavity until dentin was prepared in the middle third of the root surface of each specimen. The external surface of the root was made impermeable using a layer of adhesive, except the prepared cavity. The root canals were filled with different medications, and teeth were individually stored in flasks containing 10 ml distilled water at 37 degrees C. The water pH was measured at 1, 3, 7, 14, 21, 30, and 60 days. Data obtained were subjected to anova and Tukeys tests. Increase in pH was observed at 3 days for Calen/CHX and from 7 to 14 days for the other mixtures. Calen paste promoted pH increase up to 21 days. Calen/CMCP had the highest pH up to 21 days, and all groups had similar results at 30 days. At 60 days, the greatest pH values were observed for Calen/CMCP and Calen alone. All different formulations of Ca(OH)2-based medications tested release hydroxyl ion that can diffuse through the dentin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: To evaluate calcium ion release and pH of Sealer 26 (S26) (Dentsply, Rio de Janeiro, RJ, Brazil), white mineral trioxide aggregate (MTA), Endo CPM Sealer (CPM1) (EGEO SRL Bajo licencia MTM Argentina SA, Buenos Aires, Argentina), Endo CPM Sealer in a thicker consistency (CPM 2), and zinc oxide and eugenol cement (ZOE). Methods: Material samples (n = 10) were placed in polyethylene tubes and immersed in 10 mL of distilled water. After 3, 6,12,24, and 48 hours and 7,14, and 28 days, the water pH was determined with a pH meter, and calcium release was assessed by atomic absorption spectrophotometry. An empty tube was used as the control group. Results: The control group presented a pH value of 6.9 at all studied periods and did not show the presence of calcium ion. S26 presented greater hydroxyl ion release up to 12 hours (p < 0.05). From 24 hours until 28 days, S26, MTA, CPM1, and CPM2 had similar results. in ail periods, ZOE presented the lowest hydroxyl ion release. CPM1, followed by CPM2, released the most calcium ions until 24 hours (p < 0.05). Between 48 hours and 7 days, CPM1 and CPM2 had the highest release. A greater calcium ion release was observed for CPM2, followed by CPM1 at 14 days and for S26, CPM1, and CPM2 at 28 days. ZOE released the least calcium ions in all periods. Conclusion: Sealer 26, MTA, and Endo CPM sealer at normal or thicker consistency release hydroxyl and calcium ions. Endo CPM sealer may be an alternative as root-end filling material. (J Endod 2009;35:1418-1421)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Hydroxyl (OH(-)) and calcium (Ca(++)) ion release was evaluated in six materials: G1) Sealer 26, G2) White mineral trioxide aggregate (MTA), G3) Epiphany, G4) Epiphany + 10% calcium hydroxide (CH), G5) Epiphany + 20% CH, and G6) zinc oxide and eugenol. Material and Methods: Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. Results: G1, G2, G4, and G5 had the highest pH until 14 days (p < 0.05). G1 presented the highest Ca(++) release until 6 h, and G4 and G5, from 12 h through 14 days. Ca(++) release was greater for G1 and G2 at 28 days. G6 released the least Ca(++). Conclusions: MTA, Sealer 26, Epiphany, and Epiphany + CH release OH-and Ca(++) ions. Epiphany + CH may be an alternative as retrofilling material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) with poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer were studied with an electron injection layer of ionomers consisting of copolymers of styrene and methylmethacrylate (PS/PMMA) with 3, 6 and 8 mol% degree of sulfonation. The ionomers were able to form very thin films over the emissive layer, with less than 30 nm. Additionally, the presence of ion pairs of ionomer suppresses the tendency toward dewetting of the thin film of ionomer (similar to 10 nm) which can cause malfunction of the device. The effect of the ionomers was investigated as a function of the ion content. The devices performance, characterized by their current density and luminance intensity versus voltage, showed a remarkable increase with the ionomer layer up to 6 mol% of ionic groups, decreasing after that for the 8 mol% ionomer device. The study of the impedance spectroscopy in the frequency range from 0.1 to 10(6) Hz showed that the injection phenomena dominate over the transport in the electroluminescent polymer bulk. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence data of Eu-doped SnO(2) xerogels are presented, yielding information on the symmetry of Eu(3+) luminescent centers, which can be related to their location in the matrix: at lattice sites, substituting to Sn(4+), or segregated at particles surface. Influence of doping concentration and/or particle size on the photoluminescence spectra obtained by energy transfer from the matrix to Eu(3+) sites is investigated. Results show that a better efficiency in the energy transfer processes is obtained for high symmetry Eu(3+) sites and low doping levels. Emission intensity from (5)D(0) -> (7)F(1) transition increases as the temperature is raised from 10 to 240 K, under excitation at 266 nm laser line, because in this transition the multiphonon emission becomes significant only above 240 K. As an extension of this result, we predict high effectiveness for room temperature operation of Eu-based optical communication devices. X-ray diffraction data show that the impurity excess inhibits particle growth, which may influence the asymmetry ratio of luminescence spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum mechanics calculations at the ab initio HF/3-21G* level were carried out with Nuclear Magnetic Resonance (NMR) measurements to characterize citric acid and lithium interactions. The results indicate the formation of a tridentate organometallic compound with one lithium and one citric acid molecule and a tridentate and bidentate compound of two lithium atoms and one citric acid molecule. The results are in agreement with the experimental and theoretical data. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential energy surfaces at the singlet (s) and the triplet (t) electronic states associated with the gas-phase ion/molecule reactions of NbO3-, NbO5-, and NbO2(OH)(2)(-) with H2O and O-2 have been investigated by means of DFT calculations at the B3LYP level. An analysis of the results points out that the most favorable reactive channel comprises s-NbO3- reacting with H2O to give an ion-molecule complex s-NbO3(H2O)without a barrier. From this minima, an intramolecular hydrogen transfer takes place between the incoming water molecule and an oxygen atom of the NbO3- fragment to render the most stable minimum, s-NbO2(OH)(2)(-). This oxyhydroxide system reacts with O-2 along a barrierless process to obtain the triplet t-NbO4(OH)(2)(-)-A intermediate, and the crossing point, CP1, between s and t electronic states has been characterized. The next step is the hydrogen-transfer process between the oxygen atom of a hydroxyl group and the one adjacent oxygen atom to render a minimum with the two OH groups near each other, t-NbO4(OH)(2)(-)-B. From this point, the last hydrogen migration takes place, to obtain the product complex, t-NbO5(H2O)(-), that can be connected with the singlet separated products, s-NbO5- and H2O. Therefore, a second crossing point, CP2, has been localized. The nature of the chemical bonding of the key minima (NbO3-, NbO2(OH)(2)(-), NbO4(OH)(2)(-)-B, and NbO5-) in both electronic states of the reaction and an interaction with O-2 has been studied by topological analysis of Becke-Edgecombe electron-localization function (ELF) and atoms-in-molecules (AIM) methodology. The niobium-oxygen interactions are characterized as unshared-electron (ionic) interactions and some oxygen-oxygen interactions as protocovalent bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have demonstrated that sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field, especially in the case when the magnetic field is parallel to the workpiece surface or intersects it at small angles. In this work we report the results from two-dimensional, particle-in-cell (PIC) computer simulations of magnetic field enhanced plasma immersion implantation system at different bias voltages. The simulations begin with initial low-density nitrogen plasma, which extends with uniform density through a grounded cylindrical chamber. Negative bias voltage is applied to a cylindrical target located on the axis of the vacuum chamber. An axial magnetic field is created by a solenoid installed inside the target holder. A set of simulations at a fixed magnetic field of 0.0025 T at the target surface is performed. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that the plasma density around the cylindrical target increases because of intense background gas ionization by the electrons drifting in the crossed E x B fields. Suppression of the sheath expansion and increase of the implantation current density in front of the high-density plasma region are observed. The effect of target bias on the sheath dynamics and implantation current of the magnetic field enhanced PIII is discussed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenolic resins when heat treated in inert atmosphere up to 1000 degreesC become glassy polymeric carbon (GPC), a chemically inert and biocompatible material useful for medical applications, such as in the manufacture of heart valves and prosthetic devices. In earlier work we have shown that ion bombardment can modify the surface of GPC, increasing its roughness. The enhanced roughness, which depends on the species, energy and fluence of the ion beam, can improve the biocompatibility of GPC prosthetic artifacts. In this work, ion bombardment was used to make a layer of implanted ions under the surface to avoid the propagation of microcracks in regions where cardiac valves should have pins for fixation of the leaflets. GPC samples prepared at 700 and 1500 degreesC were bombarded with ions of silicon. carbon, oxygen and gold at energies of 5, 6, 8 and 10 MeV, respectively, and fluences between 1.0 x 10(13) and 1.0 x 10(16) ions/cm(2). Nanoindentation hardness characterization was used to compare bombarded with non-bombarded samples prepared at temperatures up to 2500 degreesC. The results with samples not bombarded showed that the hardness of GPC increases strongly with the heat treatment temperature. Comparison with ion bombarded samples shows that the hardness changes according to the ion used, the energy and fluence. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R-N) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R-N. Water wettability decreased as the proportion of N in the gas phase increased while surface toughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes an investigation of the properties of polymer films prepared by plasma immersion ion implantation and deposition. Films were synthesized from low pressure benzene glow discharges, biasing the samples with 25 W negative pulses. The total energy deposited in the growing layer was varied tailoring simultaneously pulse frequency and duty cycle. The effect of the pulse characteristics on the chemical composition and mechanical properties of the films was studied by X-ray photoelectron spectroscopy (XPS) and nanoindentation, respectively. Analysis of the deconvoluted C 1s XPS peaks demonstrated that oxygen was incorporated in all the samples. The chemical modifications induced structural reorganization, characterized by chain cross-linking and unsaturation, affecting material properties. Hardness and plastic resistance parameter increased under certain bombardment conditions. An interpretation is proposed in terms of the total energy delivered to the growing layer. (C) 2004 Elsevier B.V. All rights reserved.