4 resultados para hydrothermal fluid
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The Cretaceous Barra do Itapirapua carbonatite in southern Brazil experienced extensive postmagmatic hydrothermal alteration. In this article, Sr and Nd isotope ratios of coexisting samples of hydrothermally overprinted and of preserved, nonoverprinted carbonatite are presented. Hydrothermal alteration caused strong REE enrichment, leading to the formation of minerals of the bastnaesite group. In the overprinted carbonatite, Nd contents reach 4000 ppm, two orders of magnitude higher than in the fresh carbonatite, but epsilon(Nd) varies only within a range of 3.4 units. In contrast, Sr was leached from the carbonatite during the postmagmatic alteration; hence values of around 10,000 ppm in the fresh carbonatite drop to about 1000 ppm in the overprinted samples. Leaching is accompanied by a variation of Sr isotopic composition toward more radiogenic values, resulting in an increase of 15 units in epsilon(Sr). Variation of Sr isotopic composition is related to postmagmatic alteration and is decoupled from the variation of Nd isotopic composition, ruling out heterogeneities in the mantle source as the main cause of isotopic variability in the data set. Furthermore, this cannot be explained by bulk crustal contamination. A two-step model is proposed in which (1) a REE-rich, carbonatite-derived hydrothermal fluid overprinted the pristine carbonatite, causing REE-enrichment with a relative small change of isotopic composition; and (2) crust-derived hydrothermal fluids percolated the cooling carbonatite, leaching the original Sr from the carbonatite and introducing a more radiogenic Sr isotopic signature. The amounts of carbonatite-derived Nd with primitive, carbonatite-like Nd isotope ratios introduced during the first stage of hydrothermal alteration are high enough to buffer the effect of crust-derived Nd on the Nd isotopic composition of the overprinted carbonatite.
Resumo:
Mineral research works are fundamentals for recognition and incorporation of new reserves. This paper present an integrated analysis of geologic and metallogenetics data, with results gotten from the application of the Induced Polarization geophysical method, in an copper ore occurrence, inserted in Camaquã sedimentary basin, situated in northeast of Caçapava do Sul city (RS). In area ocurr arkosean arenites average coarse, the intensely silicified and recrystallized, pertaining to Passo da Promessa Formation. The presence of azurita and malachite in breakings and high porosity zones of the host rock characterizes the mineral occurrence in surface, located in the crossing two fault families. The inversion models indicate the predominance of high chargeability in vulcanics tuff, rock of high porosity in relation to the andesites and metaconglomerates gifts in the area. The strong structural control of the mineral occurrence associated the high chargeability in volcanic tuff is indications of the hydrothermal fluid access by means of faults, until rocks with great porosity, where it occurred disseminations of copper sulfides in depth and carbonates in surface.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondonia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondonia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Barbara deposit (Rondonia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sri (+/-W, +/-Ta, +/-Nb), and base-metal suite (Zn-Cu-Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0-19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245-450 degreesC, and (2) aqueous solutions with low CO2, low to moderate salinity (0-14 wt.% NaCl eq.), which homogenize between 100 and 340 T. In the Santa Barbara deposit, the early inclusions are represented by (1) low-salinity (5-12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 T, and (2) low-salinity (0-3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320380 degreesC. Cassiterite, wolframite, columbite-tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0-6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100-260 degreesC) and characterizes the sulfide fluorite-sericite association in the Correas deposit. The late fluid in the Santa Barbara deposit has lower salinity (0-3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240-450 degreesC, and 1,0-2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (delta(18)O quartz from 9.9parts per thousand to 10.9parts per thousand, deltaDH(2)O from 4.13parts per thousand to 6.95parts per thousand) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 degreesC. In the Santa Barbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 degreesC, respectively), and that for the cassiterite-quartz-veins is 415 degreesC. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (delta(18)O(qtz-H2O)=5.5-6.1parts per thousand) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (delta(18)O(mica-H2O)=33-9.8parts per thousand) suggest mixing with meteoric water. Late muscovite veins (delta(18)O(qtz-H2O)=-6.4parts per thousand) and late quartz (delta(18)O(mica-H2O)=-3.8parts per thousand) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor coluChange in the redox conditions related to mixing-of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit. (C) 2004 Elsevier B.V. All rights reserved.