161 resultados para hydrolytic degradation
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this study, nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by the melt intercalation method and the obtained samples were characterized by transmission electron microscopy (TEM). Since composting is an important proposal to the final disposal of biopolymers, the influence of clays on the hydrolytic degradation process of PLA was evaluated by visual analysis and monitoring of molecular weight after periods of 15 and 30 days of degradation in compost. After degradation of the materials in composting environment, the evaluation of cytotoxic, genotoxic and mutagenic effects of compost aqueous extract was carried out using a bioassay with Allium cepa as test organism. The TEM micrographs permitted the observation of different levels of dispersion, including exfoliated regions. In the evaluation of hydrolytic degradation it was noted that the presence of organoclays can decrease the rate of degradation possibly due to the barrier effect of clay layers and/or the higher degree of crystallinity in the nanocomposite samples. Nevertheless, even in the case of nanocomposites, the molecular weight reduction was significant, indicating that the composting process is favorable to the chain scission of PLA in studied materials. In the analysis performed by the bioassay using A. cepa as test organism, it was found that after degradation of the PLA and its nanocomposites the aqueous extract of compost samples induced a decreasing in the mitotic index and an increasing in the induction of chromosomal abnormalities. These results were statistically significant in relation to the negative control (distilled water). By comparing the results obtained for the nanocomposites in relative to pure polymer, there were no statistically significant differences. The types of the observed chromosomal aberrations indicated a possible genotoxic effect of the materials, which may be related to an aneugenic action of PLA degradation products. © 2013 Springer Science+Business Media New York.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The interference practised by the products in degradation of paracetemol when there is the application of spectrophotometry UV is the main obstruction to the execution of studies of thermic stability. The application of chromatography in slender layer to the isolation of paracetamol, besides being the excessively hard to apply was satisfactory to the desired proposal. The type and extension of degradation suffered by paracetamol in solution suggest the convenient inclusion, in the formulations, of one system antioxidant. This practice makes possible the blockage of the oxidation of p-aminophenol, produced by the hydrolytic degradation of paracetamol; this fact propitiated the diminution of the number of products of degradation in the medicine, making the use more secure. On the other hand, considering especially the methodological necessities of the present work, the presence of one antioxidant system facilitated the separation of paracetamol through the Thin Layer Chromatography and consequently optimized its quantification by Spectrophotometry UV during the study of thermic stability. The formulation proposed revealed excellent stability.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Objective: This study aims to evaluate the degree of conversion (DC) and hydrolytic degradation through the Vickers hardness test (HV) of a nanofilled (Filtek™ Z-250, 3M) and a microhybrid (Filtek™Supreme-XT, 3M) composite resin. Materials and methods: Eight disk-shaped specimens (4 mm diameter × 2 mm thick, ISO 4049) of each material were prepared for each test. Composites were inserted into single increment in a metallic matrix and light-cured for 40 seconds. VH readings were performed for each specimen at predetermined intervals: immediately after polymerization (control), 1, 2, 3, 7, 14, 21, 30 and 180 days. After curing, initial hardness measurements were performed and the specimens were immersed in artificial saliva at 37°C. For DC (%), specimens were ground, pressed with KBr and analyzed by FT-IR spectrophotometer. Results: Student t-test showed that there was no difference between the resins for DC (p = 0.252). ANOVA analysis revealed that Z-250 VH means were all greater than S-XT, for both top and bottom surfaces, whatever the storage-period in artificial saliva (p < 0.001). After 180 days of storage, the hardness obtained for S-XT was similar with that at the baseline, for both top and bottom surfaces. While for Z-250 hardness was not significantly different from baseline only for top surface, but there was a significant decrease observed in hardness for bottom surface. Conclusion: The materials tested showed no evidence of hydrolytic degradation in a significant way, in a 6-month storagetime in artificial saliva. Nanofilled resin presents a monomer conversion comparable to the conventional microhybrid.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation
Resumo:
Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pasture degradation is one of the greatest problems related to land use in the Amazon region, forcing farmers to open new forest areas. Many studies have identified the causes and the factors involved in this degradation process, in an attempt to reverse the situation. The purpose of this study was to examine the relationship between pasture degradation and some soil properties, to try to identify the most significant soil features in the degradation process. A cattle raising farm in the eastern Amazon region, with pastures of different ages and degrees of degradation, was used as the site for this study: a primary forest area, PN; three Guinea grass (Panicum maximum Jacq.) pastures in an increasingly degraded sequence-P1, P2 and P3; one Gamba grass (Andropogon gayanus Kunth) pasture following an extremely degraded Guinea grass pasture, P4. Aboveground phytomass data showed differences between the pastures, reflecting initially observed degradation levels. Grass biomass decreased sharply from P1 to P2 and disappeared at P3. Pasture recovery with Gamba grass at P4 was very successful, with grass biomass higher than P1 and weed biomass smaller than P2 and P3. Root biomass also decreased with pasture degradation. Soil bulk density increased with pasture decrease at the topsoil layer. Results from the soil chemical analysis showed that there were no signs of decrease in organic carbon and total nitrogen after the forest was transformed into pasture. In all pastures, degraded or not, the soil pH, the sum of bases and the saturation degree were higher than in the forest soil. The extractable phosphorus content, lower in forest soil, remained quite stable in pasture soils, but it could become a limiting factor for the maintenance of Guinea grass. Results indicated that pasture degradation does not seem to be directly related to the modification of the chemical features of soils. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to identify the degradation compounds produced during irradiation of multilayer polyamide 6 (PA-6) films and to study their migration into water and 95% ethanol food simulant. After irradiation of multilayer PA-6 films at 3, 7 and 12 kGy, degradation compounds were extracted using solid-phase microextraction, for which the time and temperature of extraction and stirring were optimized, and identified by gas chromatography-mass spectrometry. Caprolactam, 2-cyclopentylcyclopentanone and aldehydes, among other compounds, were identified in the headspace of the films. Polydimethylsiloxane was considered the best fiber for extraction. The optimum conditions of time, temperature and stirring to extract the compounds were 20 min, 80 degrees C and 225 rpm. For validation purposes, the compounds were quantified in water and 95% ethanol and the results showed high sensitivity, good precision and accuracy. Migration of compounds from irradiated and non-irradiated multilayer PA-6 films into water and 95% ethanol food simulants was carried out at 40 degrees C for 10 days. The method was efficient for the quantification of decaldehyde, 2-cyclopentylcyclopentanone and caprolactam that migrated from multilayer PA-6 films into food simulants.
Resumo:
There is a g-rowing body of evidence that melatonin and its oxidation product, N-1-acetyl-N-2-formyl-5-methoxykynuramine (AFMK), have anti-inflammatory properties. From a nutritional point of view, the discovery of melatonin in plant tissues emphasizes the importance of its relationship with plant peroxidases. Here we found that the pH of the reaction mixture has a profound influence in the reaction rate and products distribution when melatonin is oxidized by the plant enzyme horseradish peroxidase. At pH 5.5. 1 mm of melatonin was almost completely oxidized within 2 min, whereas only about 3% was consumed at pH 7.4. However, the relative yield of AFMK was higher in physiological pH. Radical-mediated oxidation products, including 2-hydroxymelatonin a dimer of, 2-hydroxymelatonin and O-demethylated dimer of melatonin account for the fast consumption of melatonin at pH 5.5. The higher production of AFMK at pH 7.4 was explained by the involvement of compound III of peroxidases as evidenced by spectral studies. on the other hand, the fast oxidative degradation at pH 5.5 was explained by the classic peroxidase cycle.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)