17 resultados para hybrid algorithm
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We introduce a new hybrid approach to determine the ground state geometry of molecular systems. Firstly, we compared the ability of genetic algorithm (GA) and simulated annealing (SA) to find the lowest energy geometry of silicon clusters with six and 10 atoms. This comparison showed that GA exhibits fast initial convergence, but its performance deteriorates as it approaches the desired global extreme. Interestingly, SA showed a complementary convergence pattern, in addition to high accuracy. Our new procedure combines selected features from GA and SA to achieve weak dependence on initial parameters, parallel search strategy, fast convergence and high accuracy. This hybrid algorithm outperforms GA and SA by one order of magnitude for small silicon clusters (Si6 and Si10). Next, we applied the hybrid method to study the geometry of a 20-atom silicon cluster. It was able to find an original geometry, apparently lower in energy than those previously described in literature. In principle, our procedure can be applied successfully to any molecular system. © 1998 Elsevier Science B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The Capacitated Centered Clustering Problem (CCCP) consists of defining a set of p groups with minimum dissimilarity on a network with n points. Demand values are associated with each point and each group has a demand capacity. The problem is well known to be NP-hard and has many practical applications. In this paper, the hybrid method Clustering Search (CS) is implemented to solve the CCCP. This method identifies promising regions of the search space by generating solutions with a metaheuristic, such as Genetic Algorithm, and clustering them into clusters that are then explored further with local search heuristics. Computational results considering instances available in the literature are presented to demonstrate the efficacy of CS. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.
Resumo:
The present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given. © 2012 Elsevier Ltd.
Resumo:
Image restoration is a research field that attempts to recover a blurred and noisy image. Since it can be modeled as a linear system, we propose in this paper to use the meta-heuristics optimization algorithm Harmony Search (HS) to find out near-optimal solutions in a Projections Onto Convex Sets-based formulation to solve this problem. The experiments using HS and four of its variants have shown that we can obtain near-optimal and faster restored images than other evolutionary optimization approach. © 2013 IEEE.
Resumo:
This paper proposes a new approach and coding scheme for solving economic dispatch problems (ED) in power systems through an effortless hybrid method (EHM). This novel coding scheme can effectively prevent futile searching and also prevents obtaining infeasible solutions through the application of stochastic search methods, consequently dramatically improves search efficiency and solution quality. The dominant constraint of an economic dispatch problem is power balance. The operational constraints, such as generation limitations, ramp rate limits, prohibited operating zones (POZ), network loss are considered for practical operation. Firstly, in the EHM procedure, the output of generator is obtained with a lambda iteration method and without considering POZ and later in a genetic based algorithm this constraint is satisfied. To demonstrate its efficiency, feasibility and fastness, the EHM algorithm was applied to solve constrained ED problems of power systems with 6 and 15 units. The simulation results obtained from the EHM were compared to those achieved from previous literature in terms of solution quality and computational efficiency. Results reveal that the superiority of this method in both aspects of financial and CPU time. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Neste trabalho é analisada a aplicação de algoritmos heurísticos para o Modelo Híbrido Linear - Hybrid Linear Model (HLM) - no problema de planejamento da expansão de sistemas de transmissão. O HLM é um modelo relaxado que ainda não foi suficientemente explorado. Assim, é realizada uma análise das características do modelo matemático e das técnicas de solução que podem ser usadas para resolver este tipo de modelo. O trabalho analisa em detalhes um algoritmo heurístico construtivo para o HLM e faz uma extensão da modelagem e da técnica de solução para o planejamento multi-estágio da expansão de sistemas de transmissão. Dentro deste contexto, também é realizada uma avaliação da qualidade das soluções encontradas pelo HLM e as possibilidades de aplicação deste modelo em planejamento de sistemas de transmissão. Finalmente, são apresentados testes com sistemas conhecidos na literatura especializada.
Resumo:
A constructive heuristic algorithm to solve the transmission system expansion planning problem is proposed with the aim of circumventing some critical problems of classical heuristic algorithms that employ relaxed mathematical models to calculate a sensitivity index that guides the circuit additions. The proposed heuristic algorithm is in a branch-and-bound algorithm structure, which can be used with any planning model, such as Transportation model, DC model, AC model or Hybrid models. Tests of the proposed algorithm are presented on real Brazilian systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a branch-and-bound algorithm to solve the multi-stage transmission expansion planning problem. The well known transportation model is employed, nevertheless the algorithm can be extended to hybrid models or to more complex ones such as the DC model. Tests with a realistic power system were carried out in order to show the performance of the algorithm for the expansion plan executed for different time frames. © 2005 IEEE.