76 resultados para human urine analysis
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Aspartic protease (EC 3.4.23) make up a widely distributed class of enzymes in animals, plants, microbes and, viruses. In animals these enzymes perform diverse functions, which range from digestion of food proteins to very specific regulatory roles. In contrast the information about the well-characterized aspartic proteases, very little is known about the corresponding enzyme in urine. A new aspartic protease isolated from human urine has been crystallized and X-ray diffraction data collected to 2.45 Angstrom resolution using a synchrotron radiation source. Crystals belong to the space group P2(1)2(1)2(1) the cell parameters obtained were a=50.99, b=75.56 and c=89.90 Angstrom. Preliminary analysis revealed the presence of one molecule in the asymmetric unit. The structure was determined using the molecular replacement technique and is currently being refined using simulated annealing and conjugate gradient protocols.
Off line extraction of phenol from human urine sample with isoamyl alcohol and determination by HPLC
Resumo:
This method has been developed for extraction and determination of phenol in a urine sample by high performance liquid chromatography.After acid hydrolysis, the free phenol was extracted with isoamyl alcohol solvent, followed by back extraction with 0.5 mol.L-1 sodium hydroxide solution and analyzed by an isocratic HPLC Varian System, equipped with reverse-phase column (MicroPak-C-18). The mobile phase was acetonitrile in 0.01 mol.L-1 hydrochloric acid solution, (20:80 v/v), and at a now-rate of 1.0 mL.min-1. The chromatogram was monitored at 220 nm in room temperature. The identification was based on retention time and the quantification was performed by automatic peak-area determination, corrected for the external standards method.The recovery was higher than 99.5 % for phenol and reproducibility of method was shown to be 2.3% standard deviation and 5.6% coefficient of variance (n=20). The limit detection was 0.05 mgL(-1) and a range of 0.05 to 20.0 mgL(-1) of phenol for linearity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method was developed to determine simazine, atrazine and their metabolite, 2-chloro-4,6-diamino-1,3,5-triazine, in urine. The presence of these herbicides in urine may reflect possible exposure to pesticides. Sample preparation involved protein precipitation and solid-phase extraction. The samples were analyzed by high-performance liquid chromatography-mass spectrometry. The detection limits were 0.4 mug/l and the analytes have a linear response in the interval 6-800 mug/l. The precision of the method was reflected in the RSD of <2.4% for the herbicides studied. Based on the detectable herbicide levels from spiked urine samples collected from unexposed volunteers, this method can be used to determine the low levels necessary for establishing reference values of the selected herbicides and the metabolite. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The differential pulse polarographic behaviour of cinnamic acid was studied in acetate and phosphate buffer solutions (pH 3.5-7.5). The reduction mechanism is discussed. The drug can be determined at pH 5.0 over the concentration range 5 X 10(-5)-1 X 10(-3) mol l(-1). The effect of tetraalkylammonium salts on the electroanalytical determination of cinnamic acid was investigated, the direct determination of the drug (0.7-5.5 mu g ml(-1)) in urine samples diluted with acetate buffer (pH 5.0) can be effected in the presence of 1 x 10(-3) mol l(-1) cetyldimethylethylammonium bromide solution. The detection limit was found to be 0.1 mu g ml(-1). The relative standard deviation from six determinations at the 5.5 mu g ml(-1) level was 1%.
Resumo:
Cefaclor is not reducible at a mercury electrode, but it can be determined polarographically and by cathodic stripping voltammetry as its initial alkaline degradation product which is obtained in high yield by hydrolysis of cefaclor in Britton-Robinson (B-R) buffer pH 10 at 50 degrees C for 30 min (reduction peak at pH 10, -0.70 V). Differential pulse polarographic calibration graphs are linear up to at least 1 x 10(-4) mol l(-1). Recoveries of 93% of the cefaclor (n = 3) were obtained from urine spiked with 38.6 mu g ml(-1) using this polarographic method with 1 ml urine made up to 10 ml with pH 10 buffer. Using cathodic stripping voltammetry and accumulating at a hanging mercury drop electrode at -0.2 V for 30 s, linear calibration graphs were obtained from 0.35 to 40 mu g ml(-1) cefaclor in B-R buffer pH 10. A relative standard deviation of 4.2% (eta = 5) was obtained, and the limit of detection was calculated to be 2.9 ng ml(-1). Direct determination of cefaclor in human urine (1 ml of urine was made up to 10 ml with pH 10 buffer) spiked to 0.39 mu g ml(-1) was made (recovery 98.6%). (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work describes an electroanalytical method for determining gold(I) thiomalate, aurothiomalate, widely used for treatment of reumatoid arthiritis, using a screen-printed carbon electrode (SPCE). Aurothiomalate (AuTM) was determined indirectly at the same electrode by accumulating it first at -1.5 V vs. printed carbon. At this potential in the adsorbed state, the AuTM is reduced to Au(0), which is then oxidized at two steps at -0.22 V and +0.54 V on SPCE. Using optimized conditions of 60 s deposition time, -1.5 V (vs. printed carbon) accumulation potential, 100 mV s(-1) scan rate, linear calibration graphs can be obtained by monitoring the peak at +0.54 V for AuTM in HCl 0.1 mol L-1 from 1.43 x 10(-6) to 1.55 x 10(-4) mol L-1. A limit of detection obtained was 6.50 x 10(-7) mol L-1, and the relative standard deviation from five measurements of 3.0 x 10(-5) mol L-1 AuTM is 4.5%. The method was successfully applied for AuTM determination in human urine sample.
Resumo:
Ceftazidime shows two main polarographic reduction peaks at pH 4.0, that at -0.45 V owing to reduction of the C=N bond in the methylethoxyimino group and that at -1.00 V owing to the reductive elimination of pyridine: the first peak is particularly suitable for the determination of ceftazidime. Ceftazidime can also be determined indirectly using the tensammetric peak at -0.60 V (in Britton-Robinson buffer pH 9.5) of pyridine liberated on hydrolysis. Ceftazidime can be determined in urine using the direct method only after Cls solid phase extraction, but it can be determined directly in the urine by hydrolysing it and using the pyridine peak. (C) 1997 Elsevier B.V. B.V.
Resumo:
The electromyographic activity of the biceps brachii - BB (long head), triceps brachii - TB (long head) and deltoideus - DA (clavicular portion) muscles, during the going (G) and return (R) phases in front support exercise, as well the efficacy of this exercise for the development of these muscles strength were studied in 10 male volunteers. The values were normalized through maximum voluntary isometric contraction (MVIC = 100%) and statistically analyzed using the Friedman, DMS and Wilcoxon non-parametric test. A value of p≤0.05 indicated significance (Campos, 1983). All the muscles presented higher electromyographic activity in the return phase of the movement. The triceps brachii was the muscle which had higher activity in both phases of the movement. It was concluded that the front support exercise is efficient for strength development mainly in the triceps brachii muscle.
Resumo:
A new method for high-resolution analyses of hair surface charge density under ambient conditions is presented in this paper. Electrostatic force microscopy (EFM) is used here to analyze changes in surface charge density in virgin hair, bleached hair, and hair treated with a cationic polymer. The atomic force microscopy technique is used concomitantly to analyze morphological changes in hair roughness and thickness. The EFM images depict exactly how the polymer is distributed on the surface of the hair fiber. The EFM's powerful analytical tools enabled us to evaluate the varying degrees of interaction between the hair fiber surface charge density and the cationic polymer. The surface charge density and the polymer's distribution in the hair fibers are presented in the light of EFM measurements. © 2006 Society of Cosmetic Scientists and the Socièété Française de Cosmétologie.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)