22 resultados para human modeling

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have been developing a computational code to project optical lenses, with low aberration effects. Our main interest is model the human eye, particularly, project special corrective lenses. As the lens shape is the focus of the optimization, we have coupled a ray tracing method with Monte Carlo techniques. The initial results indicated that the algorithm must be improved in terms of resolution and reliability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Searching for an understanding of how the brain supports conscious processes, cognitive scientists have proposed two main classes of theory: Global Workspace and Information Integration theories. These theories seem to be complementary, but both still lack grounding in terms of brain mechanisms responsible for the production of coherent and unitary conscious states. Here we propose following James Robertson's "Astrocentric Hypothesis" - that conscious processing is based on analog computing in astrocytes. The "hardware" for these computations is calcium waves mediated by adenosine triphosphate signaling. Besides presenting our version of this hypothesis, we also review recent findings on astrocyte morphology that lend support to their functioning as Local Hubs (composed of protoplasmic astrocytes) that integrate synaptic activity, and as a Master Hub (composed, in the human brain, by a combination of interlaminar, fibrous, polarized and varicose projection astrocytes) that integrates whole-brain activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 0-0.511 mm (model 1) and 0-0.544 mm (model 2), VM stress (6.36E-04-11.4 MPa (model 1) and 2.15E-04-14.7 MPa (model 2) and MP stress (-1.43-9.14 MPa (model 1) and -1.2-11.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human cyclin-dependent kinase 9 (CDK9) protein was expressed in E coli BL21 using the pET23a vector at 30 degrees C. Several milligrams of protein were purified from soluble fraction using ionic exchange and ATP-affinity chromatography. The structural quality of recombinant CDK9 and the estimation of its secondary structure were obtained by circular dichroism. Structural models of CDK9 presented 26% of helices in agreement with the spectra by circular dichroism analysis. This is the first report on human CDK9 expression in Escherichia coli and structure analysis and provides the first step for the development of CDK9 inhibitors. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bolted joints are a form of mechanical coupling largely used in machinery due to their reliability and low cost. Failure of bolted joints can lead to catastrophic events, such as leaking, train derailments, aircraft crashes, etc. Most of these failures occur due to the reduction of the pre-load, induced by mechanical vibration or human errors in the assembly or maintenance process. This article investigates the application of shape memory alloy (SMA) washers as an actuator to increase the pre-load on loosened bolted joints. The application of SMA washer follows a structural health monitoring procedure to identify a damage (reduction in pre-load) occurrence. In this article, a thermo-mechanical model is presented to predict the final pre-load achieved using this kind of actuator, based on the heat input and SMA washer dimension. This model extends and improves on the previous model of Ghorashi and Inman [2004, "Shape Memory Alloy in Tension and Compression and its Application as Clamping Force Actuator in a Bolted Joint: Part 2 - Modeling," J. Intell. Mater. Syst. Struct., 15:589-600], by eliminating the pre-load term related to nut turning making the system more practical. This complete model is a powerful but complex tool to be used by designers. A novel modeling approach for self-healing bolted joints based on curve fitting of experimental data is presented. The article concludes with an experimental application that leads to a change in joint assembly to increase the system reliability, by removing the ceramic washer component. Further research topics are also suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete nucleotide sequence of a nerve growth factor precursor from Bothrops jararacussu snake (Bj-NGF) was determined by DNA sequencing of a clone from cDNA library prepared from the poly(A) + RNA of the venom gland of B.jararacussu. cDNA encoding Bj-NGF precursor contained 723 bp in length, which encoded a prepro-NGF molecule with 241 amino acid residues. The mature Bj-NGF molecule was composed of I 18 amino acid residues with theoretical pI and molecular weight of 8.31 and 13,537, respectively. Its amino acid sequence showed 97%, 96%, 93%, 86%, 78%, 74%, 76%, 76% and 55% sequential similarities with NGFs from Crotalus durissus terrificus, Agkistrodon halys pallas, Daboia (Vipera) russelli russelli, Bungarus multicinctus, Naja sp., mouse, human, bovine and cat, respectively. Phylogenetic analyses based on the amino acid sequences of 15 NGFs separate the Elapidae family (Naja and Bungarus) from those Crotalidae snakes (Bothrops, Crotalus and Agkistrodon). The three-dimensional structure of mature Bj-NGF was modeled based on the crystal structure of the human NGF. The model reveals that the core of NGF, formed by a pair of P-sheets, is highly conserved and the major mutations are both at the three beta-hairpin loops and at the reverse turn. (C) 2002 Societe francaise de biochimie et biologic moleculaire/Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerable interest is currently focused on fish haemoglobins in order to identify the structural basis for their diversity of functional behavior. Hoplosternum littorale is a catfish that presents bimodal gill (water)/gut (air) -breathing, which allows this species to survive in waters with low oxygen content. The hemolysate of this fish showed the presence of two main haemoglobins, cathodic and anodic. This work describes structural features analyzed here by integration of molecular modeling with small angle X-ray scattering. Here is described a molecular model for the cathodic haemoglobin in the unliganded and liganded states. The models were determined by molecular modeling based on the high-resolution crystal structure of fish haemoglobins. The structural models for both forms of H. littorale haemoglobin were compared to human haemoglobin. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DBMODELING is a relational database of annotated comparative protein structure models and their metabolic, pathway characterization. It is focused on enzymes identified in the genomes of Mycobacterium tuberculosis and Xylella fastidiosa. The main goal of the present database is to provide structural models to be used in docking simulations and drug design. However, since the accuracy of structural models is highly dependent on sequence identity between template and target, it is necessary to make clear to the user that only models which show high structural quality should be used in such efforts. Molecular modeling of these genomes generated a database, in which all structural models were built using alignments presenting more than 30% of sequence identity, generating models with medium and high accuracy. All models in the database are publicly accessible at http://www.biocristalografia.df.ibilce.unesp.br/tools. DBMODELING user interface provides users friendly menus, so that all information can be printed in one stop from any web browser. Furthermore, DBMODELING also provides a docking interface, which allows the user to carry out geometric docking simulation, against the molecular models available in the database. There are three other important homology model databases: MODBASE, SWISSMODEL, and GTOP. The main applications of these databases are described in the present article. © 2007 Bentham Science Publishers Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advance in the graphic computer's techniques and computer's capacity of processing made possible applications like the human anatomic structures modeling, in order to investigate diseases, surgical planning or even provide images for training of Computer Aided Diagnosis (CAD). On this context, this work exhibits an anatomical model of cardiac structures represented in a tridimensional environment. The model was represented with geometrical elements and has anatomical details, as the different tunics that compose the cardiac wall and measures that preserves the characteristics found on real structures. The validation of the anatomical model was made through quantitative comparations with real structures measures, available on specialized literature. The results obtained, evaluated by two specialists, are compatible with real anatomies, respecting the anatomical particularities. This degree of representation will allow the verification of the influence of radiological parameters, morphometric peculiarities and stage of the cardiac diseases on the quality of the images, as well as on the performance of the CAD. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an individual designing prosthesis for surgical use and proposes a methodology for such design through mathematical extrapolation of data from digital images obtained via tomography of individual patient's bones. Individually tailored prosthesis designed to fit particular patient requirements as accurately as possible should result in more successful reconstruction, enable better planning before surgery and consequently fewer complications during surgery. Fast and accurate design and manufacture of personalized prosthesis for surgical use in bone replacement or reconstruction is potentially feasible through the application and integration of several different existing technologies, which are each at different stages of maturity. Initial case study experiments have been undertaken to validate the research concepts by making dimensional comparisons between a bone and a virtual model produced using the proposed methodology and a future research directions are discussed.