164 resultados para human dental pulp cells
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate the effect of the oxidative stress on human dental pulp cells (HDPCs) promoted by toxic concentrations of hydrogen peroxide (H2O2) on its odontoblastic differentiation capability through time. Methods HDPCs were exposed to two different concentrations of H2O2 (0.1 and 0.3 μg/ml) for 30 min. Thereafter, cell viability (MTT assay) and oxidative stress generation (H2DCFDA fluorescence assay) were immediately evaluated. Data were compared with those for alkaline phosphatase (ALP) activity (thymolphthalein assay) and mineralized nodule deposition (alizarin red) by HDPCs cultured for 7 days in osteogenic medium. Results A significant reduction in cell viability and oxidative stress generation occurred in the H2O2-treated cells when compared with negative controls (no treatment), in a concentration-dependent fashion. Seven days after H2O2 treatment, the cells showed significant reduction in ALP activity compared with negative control and no mineralized nodule deposition. Conclusion Both concentrations of H2O2 were toxic to the cells, causing intense cellular oxidative stress, which interfered with the odontogenic differentiation capability of the HDPCs. Clinical significance The intense oxidative stress on HDPCs mediated by H2O2 at toxic concentrations promotes intense reduction on odontoblastic differentiation capability in a 7-day evaluation period, which may alter the initial pulp healing capability in the in vivo situation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Many in vivo studies have stated that the response of the dentin/pulp complex does not depend on the dental material used as the liner or pulp-capping agent. However, several in vitro studies have reported the metabolic cytotoxic effects of resin components applied to fibroblast and odontoblast cell lines. The aim of this study was to evaluate the human pulp response following direct pulp capping with current bonding agents and calcium hydroxide (CH). Sound premolars scheduled for orthodontic extraction had their pulp tissue mechanically exposed. After hemorrhage control and total acid conditioning, the experimental bonding agents, including All Bond 2, Scotchbond MP-Plus, Clearfil Liner Bond 2, and Prime & Bond 2.1 were applied on the pulp exposure site. CH saline paste was used as the control pulp-capping agent. All cavities were restored with Z-100 resin composite according to the manufacturer's instructions. Following extractions, the teeth were processed for microscopic evaluation. In the short term, the bonding agents elicited a moderate inflammatory pulp response with associated dilated and congested blood vessels adjacent to the pulp exposure site. A mild inflammatory pulp response was observed when Clearfil Liner Bond 2 or CH was applied on the pulp exposures. With time, macrophages and giant cells engulfing globules and components of all experimental bonding agents displaced into the pulp space were seen. This chronic inflammatory response did not allow complete pulp repair, which interfered with the dentin bridge formation. Pulp exposures capped with CH exhibited an initial organization of elongated pulp cells underneath the coagulation necrosis. CH stimulated early pulp repair and dentin bridging that extended into the longest period. The bonding agents evaluated in the present study cannot be recommended for pulp therapy on sound human teeth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Human pulp tissue was directly capped with All Bond 2, or calcium hydroxide and evaluated 7, 30, or 60 days after the procedures. Histological analysis was performed to assess the inflammatory cell response, tissue disorganization, dentin bridging, and the presence of bacteria. At 7 days, with All Bond 2 capping, there was a large area of neutrophilic infiltrate underlying the pulp capping material, and the death of adjacent odontoblasts, was observed. However, with time, the neutrophilic reaction was replaced by fibroblastic proliferation with macrophages and giant cells surrounding globules of resin scattered in the coronal pulp tissue. The persistent inflammatory reaction and hyaline alteration of extracellular matrix inhibited complete pulp repair or dentin bridging. In contrast, at 7 days, the pulp tissue capped with calcium hydroxide exhibited odontoblast-like cells organized underneath coagulation necrosis. Pulp repair evolved into apparent complete dentin bridge formation at 60 days. All Bond 2 did not appear to allow any pulp repair and does not appear to be indicated for direct pulp capping of human teeth. Copyright © 1999 by The American Association of Endodontists.
Resumo:
Objectives: To compare the response of human dental pulp capped with a mineral trioxide aggregate (MTA) and Ca(OH) 2 powder. Methods and Material: Pulp exposures were performed on the occlusal floor of 40 permanent premolars. The pulp was then capped with either Ca(OH) 2 powder (CH) or MTA and restored with resin composite. After 30 days (groups CH30 and MTA30) and 60 days (groups CH60 and MTA60), the teeth were extracted and processed for HE and categorized in a histological score system. The data were subjected to Kruskal-Wallis and Conover tests (α=0.05). Results: In regard to dentin bridge formation, CH30 showed a tendency towards superior performance compared to MTA30 (p>0.05), although the products showed comparable results at day 60. In the item Inflammation and General State of the Pulp (p>0.05), CH showed a tendency towards presenting a higher inflammatory response. In the item Other Pulpal Findings, MTA and Ca(OH) 2 showed equal and excellent performance after 30 and 60 days (p>0.05). Conclusion: After 30 days, Ca(OH) 2 powder covered with calcium hydroxide cement showed faster hard tissue bridge formation compared to MTA. After 60 days, Ca(OH) 2 powder or MTA materials showed a similar and excellent histological response with the formation of a hard tissue bridge in almost all cases with low inflammatory infiltrate. © Operative Dentistry, 2008.
Resumo:
Objective: To evaluate the response of human pulps capped with a calcium hydroxide [Ca(OH)2] cement after bleeding control with 2 hemostatic agents. Method and Materials: Pulps were exposed on the occlusal floor, and the bleeding was controlled either with saline solution (SS) or 2.5% sodium hypochlorite (NaOCI) (SH). After that, the pulp was capped with Ca(OH) 2 cement and restored with resin composite. After 30 (groups SS30 and SH30) and 60 (groups SS60 and SH60) days, the teeth were extracted and processed with hematoxylin-eosin and categorized in a histologic score system. The data were subjected to Kruskal-Wallis and Mann-Whitney tests (α = .05). Results: Regarding dentin bridge formation, an inferior response of SH60 group was observed when compared to SS60 (P < .05). The response of the SH30 group generally was similar to that of the groups treated with saline solution. However, after 60 days, 2.5% NaOCl showed a trend toward having an inferior response. Conclusion: Using saline solution as a hemostatic agent before pulp capping with Ca(OH)2 resulted in a significantly better histomorphologic response than using 2.5% NaOCl as a hemostatic agent before capping with Ca(OH)2.
Resumo:
Aim: To evaluate the treatment with corticosteroid/antibiotic dressing in pulpotomy with calcium hydroxide. Methods: Forty-six premolars were pulpotomized and randomly assigned into 3 groups. In Group I pulpal wound was directly capped with calcium hydroxide, and Group II and Group III received corticosteroid/antibiotic dressing for 10 min or 48 h, respectively, before pulp capping. Teeth were processed for histological analysis after 7, 30 or 60 days to determine inflammatory cell response, tissue disorganization, dentin bridge formation and presence of bacteria. Attributed scores were analyzed by Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results: On the 7th day, all groups exhibited dilated and congested blood vessels in the tissue adjacent to pulpal wound. The inflammatory cell response was significantly greater in Group III (p<0.05). On the 30th day, in all groups, a thin dentin matrix layer was deposited adjacent to the pulpal wound and a continuous odontoblast-like cell layer underlying the dentin matrix was observed. On the 60th day, all groups presented a thick hard barrier characterized by an outer zone of dystrophic calcification and an inner zone of tubular dentin matrix underlined by a defined odontoblast-like cell layer. Conclusions: Within the limitations of present study, considering that the treatment was performed in healthy teeth, it may be concluded that the use of a corticosteroid/antibiotic dressing before remaining tissue protection with calcium hydroxide had no influence on pulp tissue healing.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To assess the cytotoxicity of 35% hydrogen peroxide (HP) bleaching gel applied for 15 min to sound or restored teeth with two-step self-etching adhesive systems and composite resin. Materials and Methods: Sound and restored enamel/dentin disks were stored in water for 24 h or 6 months + thermocycling. The disks were adapted to artificial pulp chambers and placed in compartments containing culture medium. Immediately after bleaching, the culture medium in contact with dentin was applied for 1 h to previously cultured odontoblast-like MDPC-23 cells. Thereafter, cell viability (MTT assay) and morphology (SEM) were assessed. Data were analyzed by two-way ANOVA and Tukey's test (a = 5%). Results: In comparison to the negative control group (no treatment), no significant cell viability reduction occurred in those groups in which sound teeth were bleached. However, a significant decrease in cell viability was observed in the adhesive-restored bleached groups compared to negative control. No significant difference among bleached groups was observed with respect to the presence of restoration and storage time. Conclusion: The application of 35% HP bleaching gel to sound teeth for 15 min does not cause toxic effects in pulp cells. When this bleaching protocol was performed in adhesive-restored teeth, a significant toxic effect occurred.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)