11 resultados para hot humid climate

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Topography has been reported to be the major factor ruling the spatial distribution of Acrisols, Plinthosols and Gleysols on the seasonally flooded, low elevation plateaux of the upper Amazon basin occupied by Tertiary (Ica & Solimoes) sediments. In this study, detailed morphological and mineralogical investigations conducted in a representative 25-ha site were combined with hydro-geochemical data to relate the vertical and lateral soil differentiations observed to the hydro-geological history of that part of the basin. As a result of the uplift of the Andes, several cuts in the extensive Tertiary marshlands have formed, at first, slightly incised plateaux of low elevation. There, weathering under hot and humid climates would have generated a reddish, freely drained and bioturbated topsoil layer and the vertical differentiation in subsoil sediments of a plinthite over an iron-depleted mottled clay. The second episode of soil differentiation is linked to the replacement of the forest by a savannah under the drier climates of the late Pleistocene, which favours surface runoff and the infill of the incisions by fine particles. This infill, combined with the return to the present humid climate, has then enabled the local groundwater to rise on the plateaux and to generate episaturation at the topsoil/subsoil transition close to the depressions. Nowadays, ferrous iron is released from the partly iron-depleted topsoil weathering front at high water levels during the rainy seasons. It moves from footslope to low-lying positions and from top to bottom in the soil profile according to the groundwater dynamics. The present general trend is thus to the lateral export of iron at high water levels due to subsurface and overland flows, its vertical transfer during the recession of the groundwater and accumulation in a nodular plinthite. In the latter, ferrous iron is adsorbed onto its softest iron masses where it feeds the neoformation of ferrihydrite that rapidly dehydrates into haematite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Climatic classification defines the geographical limits of different climate types all over the world, and it is considered essential to study similar areas. This work updates the climatic classification of the municipal districts of Botucatu and of São Manuel, State of Sao Paulo, where the experimental farms of the Schools of Agronomical Sciences - UNESP, Campus of Botucatu, State of São Paulo, are located. Koppen's and Thornthwaite's methods were used for the air temperature and precipitation data, in a 36-year period (from 1971 to 2006). For both municipal districts of Botucatu and São Manuel, the climate was characterized as being Cfa, hot climate with rains in the summer and drought in the winter, and the average temperature in the hottest month is above 22 °C. According to Thornthwaite's classification, there was a small difference due to the humidity index, characterized as B2rB′3a′ (humid climate with small hydro deficiency - April, July and August, with annual potential evapotranspiration of 945.15 mm and concentration of the potential evapotranspiration in the summer of 33%) in the district of Botucatu, and as B1rB′3a′ (humid climate with small hidric deficiency - April, July and August, with annual potential evapotranspiration of 994.21 mm and concentration of the potential evapotranspiration in the summer of 33%)in the district of São Manuel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pigs are quite sensitive to high environmental temperatures and the thermoregulation mechanisms represent great expenses in energy for heating loss, reducing animal well-being and production performance, and altering carcass quality. The aim of this study was to assess the effects of sex and dietary energy level in growing-finishing pigs submitted to characteristic seasonal variation of temperature in subtropical humid climate, and to propose a mathematical model to predict growth performance and carcass characteristics. Twenty-eight crossbred growing-finishing pigs were randomly allotted to twelve treatments, in a 2x2x3 factorial trial (2 sex; 2 environmental conditions, and 3 energy levels). Heat stress condition (climatic chamber) showed temperatures of 31 oC at 7:00 and 22 oC at 17:00 (maximum of 33 °C) and thermal comfort condition (stall) showed temperatures of 18 °C at 7:00 and 24 °C (maximum of 27 °C). Pigs were fed ad libitum with diets containing 12.2 (low), 13.6 (medium) and 15.0 (high) MJ ME/ kg DM. Voluntary feed intake, daily weight gain, and final body weight were higher (P<0.01) at thermal comfort condition and were influenced by sex (P<0.01) in growing pigs. Feed to gain ratio decreased as the energy level increased (P<0.01), with values of 2.67, 2.59, and 2.32 (12.2, 13.6, and 15.0 MJ ME/kg DM, respectively). There was energy level and sex interaction only for daily weight gain. Regarding finishing pigs, environmental conditions also showed effects (P<0.01) on voluntary feed intake, daily weight gain, and final body weight. Performance of pigs was better at thermal comfort condition. Feed to gain ratio values were 3.55, 3.42, and 2.95 for low, medium, and high energy level, respectively. Interactions between energy level and sex were observed for voluntary feed intake, daily weight gain, and final body weight (P<0.05). Carcass yield and quality were affected by environmental condition and dietary energy level. Both hot and cold carcass weight increased as energy of ration increased. Cold carcass weight increased by 1.142 kg/MJ EM whereas backfat thickness was up to 252 mm/MJ EM. Longissimus thoracis muscle thickness was around 16 mm smaller in pigs under heat stress, but lean content was 2.68% higher in those animals. Regression equations were proposed to predict the performance values in the different situations studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Pantanal is a tectonic depression located at the left margin of the Upper Paraguay River. The Paraguay is the trunk river of an alluvial depositional tract composed by several large marginal alluvial fans, the Taquari fan being the largest one. The present landscape is a complex tropical wetland characterized by month-long floods every year, with geomorphic features derived from the present conditions and others inherited from successive Pleistocene and Holocene climates. Some areas containing ponds are landscape relicts generated by eolian deflation during the Last Glacial Maximum. Many ponds, closed depressions isolated from the superficial waters by vegetated crescent ridges of fine sands, were interpreted as salt pans bordered by lunette sand dunes. Initiation of the modern wetland has occurred during the Pleistocene/Holocene transition, with the change to a more humid climate and the individualization of lacustrine systems. Active tectonics has been playing an important role in the development of the Pantanal landscape. Nowadays, the Paraguay River meanders in a large flood plain with extensive swamp surfaces, being structurally constrained by faults in the west border of the basin. Sedimentation within the Pantanal wetland is also affected by tectonic activity, especially along faults associated with the Transbrasiliano Lineament. (C) 2003 Elsevier B.V. Ltd and INQUA. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Pantanal is a Quaternary sedimentary basin located at the left margin of the Upper Paraguay River, west-central Brazil. Basin infilling was mainly by siliciclastic sediments and the stratigraphic succession exhibits an overall finingupward pattern. The depositional system tract is composed by a large meandering fluvial plain and several marginal alluvial fans, being the Taquari megafan the most striking feature. The present landscape is a complex tropical wetland, with geomorphic features derived from the present conditions and other inherited from successive Pleistocene and Holocene climates. During the Pleistocene, the sedimentary environment was dominated by braided alluvial fans, the original geometry of which is preserved as relict forms, permitting remarkable patterns of distributary paleochannels to be easily recognized in satellite images. Eolian processes were active in some abandoned lobes, contemporaneously with sedimentation in active fan lobes. Closed ponds bordered by lunette sand dunes, originally salt pans produced by eolian deflation, are relict eolian landforms in the Pantanal landscape. Eolian processes were probably more effective at the glacial maximum. Landscape has been changing in the Pantanal area since the end of the Pleistocene in adaptation to a more humid and warmer environment prevailing during Holocene. Initiation of the modern wetland has occurred during the Pleistocene / Holocene transition, with the change to a more humid climate and the individualization of lacustrine systems. The modern Pantanal wetland is a vast expanse of poorly drained lowlands that experiences annual flooding from summer to fall months. Although climatic fluctuations have occurred during all the Holocene, the alluvial fans have remained active depositional systems and lobes were formed by progradation and abandonment. Abandoned lobes were subjected... (Complete abstract click electronic address below)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaporative cooling operates using water and air as working fluids. It consists in water evaporation, through the passage of an airflow, thus decreasing the air temperature. This system has a great potential to provide thermal comfort in places where air humidity is low, being, however, less efficient where air humidity is high. A way to solve this problem is to use dehumidifiers to pre-conditioning the process air. This paper presents a system that can be used in humid climates coupling desiccant dehumidification equipment to evaporative coolers. The paper shows, initially, the main characteristics of the evaporative cooling and of the adsorption dehumidification systems. Later on the coupled systems, in which occurs a dehumidification by adsorption in a counter flow rotary heat exchanger following the evaporate cooling of the air in evaporative coolers, are analyzed. The thermodynamic equations of state are also presented. Following, this paper analyzes some operation parameters such as: reactivation temperature, R/P relationship (reactivation air flow/ process air flow) and the thermodynamic conditions of the entering air flow. The paper shows the conditions for the best operation point, with regard to thermal comfort conditions and to the energy used in the process. In addition this paper presents an application of the system in different climate characteristics of several tropical and equatorial cities. Copyright © 2005 by ABCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)