33 resultados para hippocampal LTP
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The positive profile of systemically-administered 5-HT(1A) receptor antagonists in several rodent models of anxiolytic activity suggests an important role for postsynaptic 5-HT(1A) receptor mechanisms in anxiety. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 0.1, 1.0 or 3.0 mug in 0.2 mul) into the dorsal (DH) or ventral (VH) hippocampus an behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As prior experience is known to modify pharmacological responses in this test, the effects of intra-hippocampal infusions were examined both in maze-naive and maze-experienced subjects. Test videotapes were scored for conventional indices of anxiety (% open arm entries/time) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-VH (but not intra-M) infusions of WAY-100635 (3.0 mug but not lower doses) increased open arm exploration and reduced risk assessment. These effects were observed in the absence of significant changes in locomotor activity. In contrast, neither intra-VH nor intra-DH infusions of WAY-100635 altered the behaviour of maze-experienced mice. These Findings suggest that postsynaptic 5-HT(1A) receptors in the ventral (but not dorsal) hippocampus play a significant role both in the mediation of plus-maze anxiety in mice and in experientially-induced alterations in responses to this test. (C) 2002 Elsevier B.V. BY All rights reserved.
Resumo:
The Joro spider toxin (JSTX-3), derived from Nephila clavata, has been found to block glutamate excitatory activity. Epilepsy has been studied in vitro, mostly on rat hippocampus, through brain slices techniques. The aim of this study is to verify the effect of the JSTX-3 on the epileptiform activity induced by magnesium-free medium in rat CA1 hippocampal neurons. Experiments were performed on hippocampus slices of control and pilocarpine-treated Wistar rats, prepared and maintained in vitro. Epileptiform activity was induced through omission of magnesium from the artificial cerebrospinal fluid (0-Mg2+ ACSF) superfusate and iontophoretic application of N-methyl-D-aspartate (NMDA). Intracellular recordings were obtained from CA] pyramidal neurons both of control and epileptic rats. Passive membrane properties were analyzed before and after perfusion with the 0-Mg2+ ACSF and the application of toxin JSTX-3. During the ictal-like activity, the toxin JSTX-3 was applied by pressure ejection, abolishing this activity. This effect was completely reversed during the washout period 2. when the slices were formerly perfused with artificial cerebrospinal fluid (ACSF) and again with 0-Mg2+ ACSF. Our results suggest that the toxin JSTX-3 is a potent blocker of induced epileptiform activity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We studied the effects of a wasp toxin beta-pompilidotoxin (beta-PMTX) on rat hippocampal CA1 interneurons by the current-clamp technique. The firing patterns of pyramidal neurons and pyramidale interneurons were not affected by beta-PMTX, but in oriens and radiatum interneurons, beta-PMTX converted the action potentials to prolonged depolarizing potentials by slowing the inactivation of Na+ channels. In lacunosum moleculare interneurons, beta-PMTX induced initial bursting spikes followed by block of succeeding spikes. Comparison of beta-PMTX with a sea anemone toxin, ATX 11, revealed that ATX 11 altered the firing properties of pyramidal neurons and pyramidale interneurons that were unchanged by beta-PMTX. Our results suggest that beta-PMTX modulates Na+ currents in CAl interneurons differently in various CAl neurons and the toxin is useful to classify Na+ channel subtypes. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
We analyzed the effect of the acylpolyaminetoxin JSTX-3 on the epileptogenic discharges induced by perfusion of human hippocampal slices with artificial cerebrospinal fluid lacking Mg2+ or N-methyl-D-aspartate. Hippocampi were surgically removed from patients with refractory medial temporal lobe epilepsy, sliced in the surgical room and taken to the laboratory immersed in normal artificial cerebrospinal fluid. Epileptiform activity was induced by perfusion with Mg2+-free artificial cerebrospinal fluid or by iontophoretically applied N-methyl-D-aspartate and intracellular and field recordings of CAI neurons were performed. The ictal-like discharges induced by Mg2+-free artificial cerebrospinal fluid and N-methyl-D-aspartate were blocked by incubation with JSTX-3. This effect was similar to that obtained with the N-methyl-D-aspartate receptor antagonist DL(-)2-amino-5 phosphonovaleric acid. Our findings suggest that in human hippocampal neurons, the antiepileptic effect of JSTX-3 is mediated by its action on N-methyl-D-aspartate receptor.
Resumo:
Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15. kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins. © 2012.
Resumo:
Studies have demonstrated that nutrient deficiency during pregnancy or in early postnatal life results in structural abnormalities in the offspring hippocampus and in cognitive impairment. In an attempt to analyze whether gestational protein restriction might induce learning and memory impairments associated with structural changes in the hippocampus, we carried out a detailed morphometric analysis of the hippocampus of male adult rats together with the behavioral characterization of these animals in the Morris water maze (MWM). Our results demonstrate that gestational protein restriction leads to a decrease in total basal dendritic length and in the number of intersections of CA3 pyramidal neurons whereas the cytoarchitecture of CA1 and dentate gyrus remained unchanged. Despite presenting significant structural rearrangements, we did not observe impairments in the MWM test. Considering the clear dissociation between the behavioral profile and the hippocampus neuronal changes, the functional significance of dendritic remodeling in fetal processing remains undisclosed. © 2012 ISDN.
Resumo:
Several reports have shown that the hippocampus plays an important role in different aspects of the emotional control. There is evidence that lesions in this structure cause behavioral disinhibition, with reduction of reactions expressing fear and anxiety. Thus, to portray the aptitude of cell therapy to abrogate injuries of hippocampal tissue, we examined the behavioral effects of bone marrow mononuclear cells (BMMCs) transplantation on C57BL/6 mice that had the hippocampus damaged by electrolytic lesion. For this purpose, mice received, seven days after bilateral electrolytic lesion in the dorsal hippocampus, culture medium or BMMCs expressing the enhanced green fluorescent protein (EGFP) transgene. One week after transplantation, animals were tested in the elevated plus-maze (EPM). On the whole, three assessment sessions in the EPM were carried out, with seven days separating each trial. Thirty-five days after the induction of injury, mice were sacrificed and their brains removed for immunohistochemistry. The behavioral evaluation showed that the hippocampal lesion caused disinhibition, an effect which was slightly lessened, from the second EPM test, in transplanted subjects. On the other hand, immunohistochemical data revealed an insignificant presence of EGFP+ cells inside the brains of injured mice. In view of such scenario, we hypothesized that the subtle rehabilitation of the altered behavior might be a result from a paracrine effect from the transplanted cells. This might have been caused by the release of bioactive factors capable of boosting endogenous recuperative mechanisms for a partial regaining of the hippocampal functions. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom. on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 muM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 muM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the prosynaptic axons, causing Summation of EPSPs. In the presence of 10 muM CNQX and 50 muM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. (C) 2001 Published by Elsevier B.V. Ireland Ltd and the Japan Neuroscience Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)