42 resultados para high temperature superconductor
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The incubation of seeds of Raphanus sativus L. cvar Early Scarlet Globe with 10 mu M aspirin resulted in increase in the temperature range for germination. The analysis of percentage germination and germination rates indicated the increase in the optimum temperature from 21.4 to 26 degrees C although at 32.6 degrees C 80.8% of seeds germinated with aspirin and no germination in the control. The analysis of the kinetics of seed germination indicated that aspirin treatment resulted in germination by decreasing the enthalpy of activation of the process. The aspirin treatment also resulted in the synchronization of seed germination. on the base of our results we propose aspirin application in practice to increase the tolerance to high temperature and to synchronize seed germination at least in Raphanus sativus L. cvar early scarlet globe.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electric properties of the sodium niobate perovskite ceramic were investigated by impedance spectroscopy in the frequency range from 5 Hz to 13 MHz and from room temperature up to 1073 K, in a thermal cycle. Both capacitance and conductivity exhibit an anomaly at around 600 K as a function of the temperature and frequency. The electric conductivity as a function of angular frequency sigma(omega) follows the relation sigma(omega)=Aomega(s). The values of the exponent s lie in the range 0.15less than or equal tosless than or equal to0.44. These results were discussed considering the conduction mechanism as being a type of polaron hopping. (C) 2003 American Institute of Physics.
Resumo:
Conductivity behavior of the Bi12TiO20 single crystal was investigated by the electric modulus spectroscopy, which was carried out in the frequency range from 5 Hz to 13 MHz and at temperatures higher than 400 degrees C. The resistance curve exhibits a set of properties correlated to a negative temperature coefficient thermistor. In the temperature range investigated, the characteristic parameter (,8) of the thermistor is equal to 4834 degrees C. Temperature coefficients of the resistance (a) were derived being equal to -3.02 x 10(-2) degrees C-1 at 400 degrees C and equal to -9.86 x 10(-3) degrees C-1 at 700 degrees C. The nature of the electric relaxation phenomenon and magnitude dc conductivity are approached. (c) 2005 American Institute of Physics.
Resumo:
Nitrogen implantation into Ti alloys at higher temperatures improves their mechanical and corrosion resistance properties by forming a thicker nitride layer. In this paper, two different sets of Ti-6Al-4V samples were plasma immersion ion implantation (PIII)-treated using nitrogen plasma, varying the treatment time from 30 to 150 min (800 degrees C) and the process temperature from 400 degrees C to 800 degrees C (t = 60 min). Nanoindentation measurements of the PIII-treated samples at 800 C during 150 min showed the highest hardness value, 24 GPa, which is about four times bigger than untreated sample hardness. The N penetration at these conditions reached approximately 150 nm as analyzed by Auger spectroscopy. on the other hand, the lowest passive current density (3 x 10(-7) A. cm(-2)) was obtained for a PIII-treated sample during 30 min at higher temperature (800 degrees C). The corrosion resistance of this sample is almost the same as for the untreated specimen. Corrosion behavior evidenced that in strong oxidizing media, all PIII-treated samples are more corrosion resistant than the untreated one. PIII processing at higher temperatures promotes smoothing of the sample surface as observed by scanning electron microscopy (SEM). Grazing incidence X-ray diffraction analyses of the untreated samples identified the two typical Ti phases, Ti alpha and Ti beta. After the implantation, Ti2N and TiO2 phases were also detected.
Resumo:
Superconductor films of the BSCCO system have been grown by dip coating technique with good success. The chemical method allows us to grow high temperature superconductor thin films to get better control of stoichiometry, large areas and is cheaper than other methods. There is a great technological interest in growth oriented superconductor films due anisotropic characteristics of superconductor materials of high critical temperature, specifically the cuprates, as we know that the orientation may increase the electrical transport properties. Based on this, the polymeric precursor method has been used to obtain thin films of the BSCCO system. In this work we have applied that method together with the deposition technique known as dip coating to obtain Bi-based superconductor thin films, specifically, Bi1.6Pb0.4Sr2.0C2.0Cu3.0Ox+8, also known as 2223 phase with a critical temperature around 110 K. The films with multilayers have been grown on crystalline substrates of LaAlO3 and orientated (100) after being heat treated around 790 degrees C - 820 degrees C in lapse time of 1 hour in a controlled atmosphere. XRD measurements have shown the presence of a crystalline phase 2212 with a critical temperature around 85 K with (001) orientation, as well as a small fraction of 2223 phase. SEM has shown a low uniformity and some cracks that maybe related to the applied heat treatment. WDS has also been used to study the films composition. Different heat treatments have been used with the aim to increase the percentage of 2223 phase. Measurements of resistivity confirmed the presence of at least two crystalline phases, 2212 and 2223, with T-c around 85 K and 110 K, respectively.
Resumo:
Bi1.5ZnSb1.5O7 dielectric ceramic with pyrochlore structure was investigated by impedance spectroscopy from 400 to 750 degreesC. Pyrochlore was synthesized by the polymeric precursor method, a chemical synthesis route derived from Pechini's method. The grain or bulk resistance exhibits a sensor temperature characteristic, being a thermistor with a negative temperature coefficient (NTC). Only a single region was identified on the resistance curve investigated. The NTC thermistor characteristic parameter (beta) is equal to 7140 degreesC, in the temperature range investigated. The temperature coefficient of the resistance (alpha) was derived, being equal to -4.46x10(-2) degreesC(-1) at 400 degreesC. The conduction mechanism and relaxation are discussed. (C) 2003 American Institute of Physics.
Resumo:
We examine a Lipkin based two-level pairing model at finite temperature and in the thermodynamic limit. Whereas at T = 0 the model exhibits a superconducting ground state for sufficiently high values of the coupling constant, a partially superconducting phase in which some of the particles are paired, is found to survive at high temperatures in a special treatment. This phase is a mixture of abnormally-occupied eigenstates, which lie at higher energy, of the interactionless model Hamiltonian.
Resumo:
The surface oxidation of UO2 sintered plates at 170-275 ° C was studied in situ by high temperature X-ray diffractometry. At very low oxygen concentration, UO2 is oxidized to U4O9, while at 300°C and argon-20 vol% oxygen it is oxidized up to U3O7. X-ray diffraction profiles of the UO2, U4O9 and U3O7 phases were well characterized during the transformations. The activation energy for the transformation of UO2 to U4O9, obtained from X-ray diffraction data, was found to be 117 ± 9 kJ/mol and 90 ± 14 kJ/mol for the β-(311) and α-(200) reflections, respectively. © 1991.
Resumo:
Recent studies have been done to achieve biomedical alloys containing non-toxic elements and presenting low elastic moduli. It has been reported that Ti-Nb-Zr alloys rich in beta phase, especially Ti-13Nb-13Zr, have potential characteristics for substituting conventional materials such as Ti-6Al-4V, stainless steel and Co alloys. The aim of this work is to study the internal friction (IF) of Ti-13Nb-13Zr (TNZ) alloy due to the importance of the absorption impacts in orthopedic applications. The internal friction of this alloy produced by arc melting was measured using an inverted torsion pendulum with the free decay method. The measurements were performed from 77 to 700 K with heating rate of 1 K/min, in a vacuum better than 10-5 mBar. The results show a relaxation structure at high temperature strongly dependent on microstructure of the material. Qualitative discussions are presented for the experimental results, and the possibility of using the TNZ as a high damping material is briefly mentioned.
Resumo:
The experiment was conducted in the experimental area belonging to the Section of Crop Production and Aromatic Medicinal Plants of the FCAV-UNESP, Jaboticabal Campus - Sao Paulo, Brazil. Tolerance to high temperature was studied in six determinate genotypes of tomato (Lycopersicon esculentum L.): Agrocica 8, Apex 1000, Botu-13, Calmech VFAS, Nemadoro and Jab-2, which were cultivated in a greenhouse at temperatures above 33oC for at least 2 h/day during blooming. The objectives of the study were to identify the genetic diversity of the genotypes studied and to determine their performance associated with tolerance to high temperature. Dissimilarity was determined by the generalized Mahalanobis distance. Delineation groups were optimized with the Tocher technique. A random block design was utilized with six treatments and with three replications. Two similarity groups were identified: 1 - Apex 1000, Botu-13, Calmech VFAS, Jab-2, Nemadoro and 2 - Agrocica 8. Crossing of genotypes within one group has no advantage because little genetic divergence and no heterotic response would be expected. However, the crossing of genotypes between groups is suggested. Knowledge of these groups will be important for efficiency future breeding efforts.
Resumo:
The study was conducted at the Section of Crop Production and Aromatic Medicinal Plants of FCAV-UNESP, Jaboticabal Campus - Sao Paulo, Brazil. Nine indeterminate tomato (Lycopersicon esculentum Mill.) genotypes, Jumbo, Santa Clara, Cláudia VF, Concorde, Débora Plus, FM-9, Carmen, Príncipe Gigante, and CL 5915, were evaluated for high temperature tolerance. Three determinate tomato genotypes, FM-9, Suncoast and TSW-10, were cultivated in a greenhouse at more than 33°C air temperature for at least 2 h/day during bloom. The objective was to identify variable genotypes to determine their tolerance of high temperature. Four replications of fifteen treatments were planted in a randomized block design. Dissimilarity was determined by the generalized Mahalanobis distance. Delineation groups were optimized with the Tocher technique. The tomatoes were classified into six groups of similar temperature responses. CL 5915 was the most tolerant of high temperatures. Crossing of genotypes within one group has no advantage because little genetic divergence and no heterotic response would be expected. However, the crossing of genotypes between groups is suggested. Knowledge of these groups will be important for efficient future breeding efforts.
Resumo:
BaCe 0.9-xNb xY 0.1O 3-δ (where x=0, 0.01, 0.03 and 0.05) powders were synthesized by solid-state reaction to investigate the influence of Nb concentration on chemical stability and electrical properties of the sintered samples. The dense electrolyte pellets were formed from the powders after being uniaxially pressed and sintered at 1550 °C. The electrical conductivities determined by impedance measurements in temperature range of 550-750 °C in different atmospheres (dry argon and wet hydrogen) showed a decreasing trend with an increase of Nb content. For all samples higher conductivities were observed in the wet hydrogen than in dry argon atmosphere. The chemical stability was enhanced with increasing of Nb concentration. It was found that BaCe 0.87Nb 0.03Y 0.1O 3-δ is the optimal composition that satisfies the opposite demands for electrical conductivity and chemical stability, reaching 0.8×10 -2 S cm -1 in wet hydrogen at 650 °C compared to 1.01×10 -2 S cm -1 for undoped electrolyte. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Although titanium and its alloys own good mechanical properties and excellent corrosion resistance, these materials present poor tribological properties for specific applications that require wear resistance. In order to produce wear-resistant surfaces, this work is aimed at achieving improvement of wear characteristics in Ti-Si-B alloys by means of high temperature nitrogen plasma immersion ion implantation (PIII). These alloys were produced by powder metallurgy using high energy ball milling and hot pressing. Scanning electron microscopy (SEM) and X-ray diffraction identified the presence of α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. Wear tests were carried out with a ball-on-disk tribometer to evaluate the friction coefficient and wear rate in treated and untreated samples. The worn profiles were measured by visible light microscopy and examined by SEM in order to determine the wear rates and wear mechanisms. Ti-7.5Si-22.5B alloy presented the highest wear resistance amongst the untreated alloys produced in this work. High temperature PIII was effective to reduce the wear rate and friction coefficient of all the Ti-Si-B sintered alloys. © 2013 Elsevier B.V.