15 resultados para high charge state
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oxidation states of transition metal cations in spinels-type oxides are sometimes extremely difficult to determine by conventional spectroscopic methods. One of the most complex cases occurs when there are different cations, each one with several possible oxidation states, as in the case of the magnetoresistant Mn(2-x)V(1+x)O4 (x=0, 1/3 and 1) spinel-type family. In this contribution we describe the determination of the oxidation state of manganese and vanadium in Mn(2-x)V(1+x)O4 (x=0, 1/3,1) spinel-type compounds by analyzing XANES and high-resolution K beta X-ray fluorescence spectra. The ionic models found are Mn22+V4+O4, Mn5/32+V4/33.5+O4 and Mn2+V23+O4. Combination of the present results with previous data provided a reliable cation distribution model. For these spinels, single magnetic electron paramagnetic resonance (EPR) lines are observed at 480 K showing the interaction among the different magnetic ions. The analysis of the EPR parameters show that g-values and relative intensities are highly influenced by the concentration and the high-spin state of Mn2+. EPR broadening linewidth is explained in terms of the bottleneck effect, which is due to the presence of the fast relaxing V3+ ion instead of the weak Mn2+ (S state) coupled to the lattice. The EPR results, at high temperature, are well explained assuming the oxidation states of the magnetic ions obtained by the other spectroscopic techniques. (c) 2013 Elsevier Inc. All rights reserved.
Resumo:
This paper reports the results obtained using the osmotic stress method applied to the purified cathodic and anodic hemoglobins (Hbs) from the catfish Hoplosternum littorale, a species that displays facultative accessorial air oxygenation. We demonstrate that water potential affects the oxygen affinity of H. littorale Hbs in the presence of an inert solute (sucrose). Oxygen affinity increases when water activity increases, indicating that water molecules stabilize the high-affinity state of the Hb. This effect is the same as that observed in tetrameric vertebrate Hbs. We show that both anodic and cathodic Hbs show conformational substrates similar to other vertebrate Hbs. For both Hbs, addition of anionic effectors, especially chloride, strongly increases the number of water molecules bound, although anodic Hb did not exhibit sensitivity to saturating levels of ATP. Accordingly, for both Hbs, we propose that the deoxy conformations coexist in at least two anion-dependent allosteric states, T-o and T-x, as occurs for human Hb. We found a single phosphate binding site for the cathodic Hb.
Resumo:
The interaction of polyelectrolytes with oppositely charged ionic surfactants was studied at low surfactant concentrations using photochemical bound and free probes. Free probes migrate to initially formed pre-aggregates in systems with high charge- density polyelectrolytes, giving rise to excimer emission. For these systems the initial aggregation process seems to be due to electrostatic interactions. For larger surfactants or copolymers containing larger proportions of neutral monomer that interactions are of hydrophobic nature.
Resumo:
Pós-graduação em Psicologia do Desenvolvimento e Aprendizagem - FC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Chitosan is a natural biodegradable polymer with great potential for pharmaceutical applications due to its biocompatibility, high charge density , nontoxicity and mucoadhesion. Gel formation can be obtained by the interactions of chitosans with low molecular counterions such as polyphosphates, sulphates and crosslinking with glutaraldehyde. This gelling property of chitosan allows a wide range of applications such as coating of pharmaceuticals and food products, gel entrapment of biochemicals, whole cells, microorganisms and algae. One of its main applications is the synthesis of microspheres for coating of pharmaceuticals , magnetic particles an other substances. In such a way, we can build targeted drug delivery systems. In the present work, we applied the method of spraying and coagulation. The resulting microspheres, then, were characterized by optical microscopy
Resumo:
Power-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor. Hole transfer after cyanine photoexcitation occurs with an efficiency close to unity up to dye concentrations of similar to 30 wt%. Cyanines present an efficient self-quenching mechanism of their fluorescence, and for higher dye loadings in the blend, or pure cyanine films, this process effectively reduces the hole transfer. Comparison between dye emission in an inert polystyrene matrix and the donor matrix allowed us to separate the influence of self-quenching and charge transfer mechanisms. Favorable photovoltaic bilayer performance, including high open-circuit voltages of similar to 1 V confirmed the results from optical experiments. The characteristics of solar cells using different dyes also highlighted the need for balanced adjustment of the energy levels and their offsets at the heterojunction when using low-bandgap materials, and accentuated important effects of interface interactions and solid-state packing on charge generation and transport.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Three-body charge transfer reactions with Coulomb interaction in the final state are considered within the framework of coordinate-space integro-differential Faddeev-Hahn-type equations within two- and six-state close-coupling approximations. The method is employed to study direct muon transfer in low-energy collisions of the muonic hydrogen H-mu by helium (He2+) and lithium (Li3+) nuclei. The experimentally observed isotopic dependence is reproduced.
Resumo:
This paper presents a pulsewidth modulation dc-dc nonisolated buck converter using the three-state switching cell, constituted by two active switches, two diodes, and two coupled inductors. Only part of the load power is processed by the active switches, reducing the peak current through the switches to half of the load current, as higher power levels can then be achieved by the proposed topology. The volume of reactive elements, i.e., inductors and capacitors, is also decreased since the ripple frequency of the output voltage is twice the switching frequency. Due to the intrinsic characteristics of the topology, total losses are distributed among all semiconductors. Another advantage of this converter is the reduced region for discontinuous conduction mode when compared to the conventional buck converter or, in other words, the operation range in continuous conduction mode is increased, as demonstrated by the static gain plot. The theoretical approach is detailed through qualitative and quantitative analyses by the application of the three-state switching cell to the buck converter operating in nonoverlapping mode $(D < 0.5)$. Besides, the mathematical analysis and development of an experimental prototype rated at 1 kW are carried out. The main experimental results are presented and adequately discussed to clearly identify its claimed advantages. © 1986-2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)