39 resultados para hexaaquaaluminum(III) ion
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Gaussian basis sets were developed with the Generator Coordinate Hartree-Fock (GCHF) method for the atoms from H (14s), O (23s16p), and Al (29sl9p) in the ground state. These basis sets were then contracted to 3s (12,1,1), 5s3p (18,2,1,1,1/14,1,1), and 7s5p (20,3,2,1,1,1,1/14,2,1,1,1) for H, O and Al atoms, respectively, by a standard procedure. The quality of contracted basis sets in molecular calculations was evaluated through studies of the total and orbital (epsilon(HOMO) and epsilon(HOMO-1)) energies at the HF level for the hexaaquaaluminum(III) ion, [AI(H(2)O)(6)](3+). For the O atom, the 5s3p was supplemented with d polarization function and it was used in combination with 3s, and 7s5p for H and Al atoms was used to the theoretical interpretation of the Infrared (IR) spectrum of hexaaquaaluminum(III) ion. The calculations of the IR-spectrum were also performed at the HF level and it showed that the basis sets obtained with the aid of GCHF method lead to the selection of useful contracted Gaussian basis sets for the theoretical study of vibrational property of ionic specie of our interest. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Generator Coordinate Hartree-Fock (GCHF) method is employed to design 16s, 16s10p, 24s17p13d, 25s17p13d, and 26s17p Gaussian basis sets for the H ((2)S), O ((3)P), O(2-) ((1)S), Cr(3+) ((4)F), Cr(4+) ((3)F), and Cr(6+) ((1)S) atomic species. These basis sets are then contracted to (4s) for H ((2)S), (6s4p) for O ((3)P), and O(2-) ((1)S), (986p3d) for Cr(3+) ((4)F), (10s8p3d) for Cr(4+) ((3)F), and (13s7p) for Cr(6+) (1S) by a standard procedure. For evaluation of the quality of those basis sets in molecular calculations, we have accomplished studies of total and orbital (HOMO and HOMO-1) energies at the HF-Roothaan level for the molecular species of our interest. The results obtained with the contracted basis sets are compared to the values obtained with our extended basis sets and to the standard 6-311G basis set from literature. Finally, the contracted basis sets are enriched with polarization function and then utilized in the theoretical interpretation of IR-spectrum of hexaaquachromium (III) ion, [Cr(H(2)O)(6)](3+), tetraoxochromium (IV) ion, [CrO(4)](4-), and tetraoxochromium (VI) ion, [CrO(4)](2-). The respective theoretical harmonic frequencies and IR-intensities were computed at the density functional theory (DFT) level. In the DFT calculations we employed the Becke's 1988 functional using the LYP correlation functional. The comparison between the results obtained and the corresponding experimental values indicates a very good description of the IR-spectra of the molecular ions studied, and that the GCHF method is still a legitimate alternative for selection of Gaussian basis sets. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Contracted GTF basis sets designed with aid of the Generator Coordinate Hartree-Fock (GCHF) method for H(2S), O2-(1S), and Cr3+(4F) atomic species are applied to perform theoretical interpretation of the Raman spectrum of hexaaquachromium(III) ion. The 16s, 16s 10p, and 24s17p13d GTF basis sets were contracted to [4s] for H atom, [6s4p], and [9s6p3d] for O2- and Cr3+, respectively, by Dunning's scheme. For Cr3+, the [9s6p3d] basis set was enriched with f polarization function and used in combination com [4s] and [6s4p] in the study of our interest. The results obtained in this report show that the contracted GTF basis sets used are a useful alternative for the theoretical interpretation of Raman spectrum of hexaaquachromium(III) ion and that GCHF method is an effective alternative to selection of GTF basis sets for theoretical study of vibrational properties of poliatomic species. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work reports on the photoluminescent properties of the complex diequatris(thenoyltrifluoroacetonate) europium(III), which was adsorbed or supported on tubes of modified surface silica matrix. The luminescence data and the experimental intensity parameter results evidence the existence of high interactions between the complex [Eu(tta)(3)(H2O)(2)] and the modified surface matrix. The anchored complex on macroporous silica shows higher intensity parameter values suggesting that the Eu-0 bond becomes more covalent than the adsorbed one. Therefore, the hypersensitive character of the D-5(0) --> F-7(2) transition increases evidencing a high contribution of the dynamic coupling mechanism possibly due to highly polarizable chemical environments occupied by europium(III) ion. The lifetimes of the complex on silica matrices were measured. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The pyH[trans-RuCl4(py)2](1) and pyH[trans-RuCl4(CO)(py)](2) complexes were synthesized and found to crystallize in space group P21/n, Z = 4 with a = 8.080(7), b = 22.503(7), c = 10.125(6) Å, β = 93.19(6)° for (1) and a = 7.821(1), b = 10.337(3), c = 19.763(3) Å, β = 93.07(1)° for (2). The structures were solved by Patterson and difference Fourier techniques and refined to R = 0.062 for (1) and R = 0.038 for (2). In both cases the Ru(III) ion is octahedrally coordinated to four co-planar chlorine atoms, the nitrogen of the pyridine rings or carbon from the carbon monoxide. Another protonated pyridine group, which forms the counter-cation completes the crystal structures. The UV-Vis absorption spectra show three bands: (1) 360 (ε = 1180 M-1 cm-1), 441 (ε = 3200 M-1 cm-1) and 532 nm (ε = 400 M-1 cm-1); (2) 315(ε = 1150 M-1 cm-1), 442 (ε = 3170 M-1 cm-1) and 530 nm (ε = 390 M-1 cm-1). The two higher energy bands were associated with ligand-to-metal charge transfer transitions and a third band at lower energy was assigned to a d-d transition. Low temperature EPR data confirmed the presence of the paramagnetically active Ru(III) and it is consistent with axial symmetry of the complexes. The position of the stretching CO band in complex (2) is discussed in terms of metal-CO backbonding.
Resumo:
The compound dysprosium(III) 2-metoxybenzoate, {[Dy(2-MeO-Bz)2μ-(2-MeO-Bz)(H2O)2]2·4H2O}n (2-MeO-Bz = 2- methoxybenzoate), was synthesized from a reaction mixture containing DyCl3 and Na(2-MeO-Bz), and characterized by single-crystal X-ray diffraction. The molecular structure showed dinuclear units in which each Dy(III) ion is coordinated by nine oxygen atoms. The carboxylato groups are bound to the dysprosium centers in two modes: bidentate chelating and tridentate chelating-bridging. Besides this, the occurrence of hydrogen bonds involving a coordinated water molecule and carboxylato groups leads to the formation of helicoidal chains along the crystal lattice, resulting in a supramolecular one-dimensional polymer. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
The new europium binuclear complex [Eu2(dcpz) 2(suc)(H2O)8]·(H2O) 1.5 (dcpz = 3,5-dicarboxypyrazolate and suc = succinate) has been synthesized and structurally characterized by single crystal X-ray diffraction methods. The binuclear complex crystallizes in the triclinic space group P1̄ and consists of two lanthanide ions linked by two different bridging organic ligands. 3D supramolecular framework is constructed by hydrogen bonds. The compound shows strong red emission under UV excitation at room temperature associated to IL transitions indicating a ligand to metal energy transfer mechanism since the triplet energy level lies higher than that of europium 5D0 level. Magnetic susceptibility studies showed weak temperature dependence characteristic of the Van Vleck paramagnetism. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The novel coordination polymer with the formula {[Nd2(2,5-tdc)3(dmf)2(H2O)2].dmf.H2O}n (2,5-tdc2-=2,5-thiophedicarboxylate anion and dmf=dimethylformamide) has been synthesized and characterized by thermal analysis (TG/DTA), vibrational spectroscopy (FTIR) and single crystal X-ray diffraction analysis (XRD). Structure analysis reveals that Nd(III) ions show dicapped trigonal prism coordination geometry. The 2,5-tdc2- ligands connect four Nd(III) centers, adopting (κ1 - κ1) - (κ1 - κ1) - μ4 coordination mode, generating an interesting 6-connected uninodal 3D network. Photophysical properties were studied using diffuse reflectance spectroscopy (DR) and excitation/emission spectra. The photoluminescence data show the near infrared emission (NIR) with the characteristic 4F3/2→4IJ (J=9/2, 11/2 and 13/2) transitions of Nd(III) ion, indicating that 2,5-tdc2- is able to act as a sensitizer for emission in NIR region. © 2013 Elsevier B.V.
Resumo:
In the search for new therapeutic tools against tuberculosis and to further address the therapeutic potential of pyridine-2-thiol 1-oxide (Hmpo) metal complexes, two new octahedral [M(III)(mpo)3] complexes, with M = Ga or Bi, were synthesized and characterized in the solid state and in solution. Attempts to crystallize [Ga(III)(mpo)3] in CH2Cl2 led to single crystals of the reaction product [GaCl(mpo)2], where the gallium(III) ion is in a square basis pyramidal environment, trans-coordinated at the basis to two pyridine-2-thiolato 1-oxide anions acting as bidentate ligands through their oxygen and sulfur atoms. The biological activity of the new [M(III)(mpo)3] complexes together with that of the previously reported Fe(III) analogous compound and the pyridine-2-thiol 1-oxide sodium salt (Na mpo) was evaluated on Mycobacterium tuberculosis. The compounds showed excellent activity, both in the standard strain H37Rv ATCC 27294 (pan-susceptible) and in five clinical isolates that are resistant to the standard first-line anti-tuberculosis drugs isoniazid and rifampicin. These pyridine-2-thiol 1-oxide derivatives are promising compounds for the treatment of resistant tuberculosis.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Yttrium-aluminum oxides are interesting compounds and they have been extensively used as host for lasers and phosphors, due to their stable physical and chemical properties. The fabrication of yttrium-aluminum garnet (YAG) has been investigated thoroughly. Single-crystal YAG is expensive and to produce it a new way has been investigated. This process consists of modifying the methodology of reagents mixture and the process of heating them. The microwave irradiation is used to heat-treat the oxide mixture. The traditional synthesis of YAG powders occurs through the reaction of aluminum and yttrium powders at high temperatures. With this work we investigated the preparation of YAG by non-hydrolytic sol-gel route as an alternative methodology to obtain yttrium-aluminum matrix from inorganic precursors (yttrium and aluminum chloride). The preparation of the gel was carried out in an oven-dried glassware. The AlCl3, YCl3 and ethanol were reacted in reflux under argon atmosphere. Europium III chloride was added as a structural probe. The powder was dried and heat-treated in modified microwaves. The samples were pre-treated at 50 and 800 C during I h and then heated in microwaves for 30 s, 2 and 4 min. The formation process and structure of the powders were studied by means of X-ray diffraction (XRD), photoluminescence (PL) and transmission electronic microscopy (TEM). XRD presents only picks corresponding to the YAG phase and confirmed by TEM. PL date showed that the YAG phase was formed in 2 min with the samples pre-treated at 50 C. For the samples pretreated at 800 degrees C, the YAG phase appears in 30s. The excitation spectra present a maximum of 394 nm corresponding to the L-5(6) level and emission spectra of Eu III ion present bands characteristic transitions arising from the D-5(0) -> F-7(J) (J= 1, 2, 3, 4) monifolds excited at their maximum. The magnetic dipole D-5(0) -> F-7(1) transition presents more intensity than the electric dipole D-5(0) -> F-7(2) transition. This methodology showed efficiency in obtaining YAG phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IBILCE