56 resultados para helix loop helix protein
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The orphan receptor nerve growth factor-induced B (NGFI-B) is a member of the nuclear receptor's subfamily 4A (Nr4a). NGFI-B was shown to be capable of binding both as a monomer to an extended half-site containing a single AAAGGTCA motif and also as a homodimer to a widely separated everted repeat, as opposed to a large number of nuclear receptors that recognize and bind specific DNA sequences predominantly as homo- and/or heterodimers. To unveil the structural organization of NGFI-B in solution, we determined the quaternary structure of the NGFI-B LBD by a combination of ab initio procedures from small-angle X-ray scattering (SAXS) data and hydrogen-deuterium exchange followed by mass spectrometry. Here we report that the protein forms dimers in solution with a radius of gyration of 2.9 nm and maximum dimension of 9.0 nm. We also show that the NGFI-B LBD dimer is V-shaped, with the opening angle significantly larger than that of classical dimer's exemplified by estrogen receptor (ER) or retinoid X receptor (RXR). Surprisingly, NGFI-B dimers formation does not occur via the classical nuclear receptor dimerization interface exemplified by ER and RXR, but instead, involves an extended surface area composed of the loop between helices 3 and 4 and C-terminal fraction of the helix 3. Remarkably, the NGFI-B dimer interface is similar to the dimerization interface earlier revealed for glucocorticoid nuclear receptor (GR), which might be relevant to the recognition of cognate DNA response elements by NGFI-B and to antagonism of NGFI-B-dependent transcription exercised by GR in cells. Published by Cold Spring Harbor Laboratory Press. Copyright © 2007 The Protein Society.
Resumo:
Antimicrobial peptides (AMPs) are effector molecules of innate immune systems found in different groups of organisms, including microorganisms, plants, insects, amphibians and humans. These peptides exhibit several structural motifs but the most abundant AMPs assume an amphipathic alpha-helical structure. The alpha-helix forming antimicrobial peptides are excellent candidates for protein engineering leading to an optimization of their biological activity and target specificity. Nowadays several approaches are available and this review deals with the use of combinatorial synthesis and directed evolution in order to provide a high-throughput source of antimicrobial peptides analogues with enhanced lytic activity and specificity.
Resumo:
To assess the structural and functional significance of the N helix (residues 3-13) of avian recombinant troponin C (rTnC), we have constructed NHdel, in which residues 1-11 have been deleted, both in rTnC and in the spectral probe mutant F29W (Pearlstone, J. R., Borgford, T., Chandra, M., Oikawa, K., Kay, C. M., Herzberg, O., Moult, J., Herklotz, A., Reinach, F. C., and Smillie, L.B. (1992) Biochemistry 31, 6545-6553). Comparison of the far- and near-UV CD spectra (±Ca2+) of F29W and F29W/ NHdel and titration of the Ca2+-induced ellipticity and fluorescence changes indicates that the deletion has little effect on the global fold of the molecule but reduces the Ca2+ affinity of the N domain, but not the C domain, by 1.6-1.8-fold. Comparisons of the mutants NHdel, F29W, and F29W/NHdel with rTnC have been made using several functional assays. In reconstituted troponin-tropomyosin actomyosin subfragment 1 and myofibrillar ATPase systems, both F29W and NHdel have significantly reduced Ca2+-activated enzymic activities. These effects are cumulative in the double mutant F29W/ NHdel. On the other hand, maximal isometric tension development in Ca2+-activated reconstituted skinned fibers is not affected with F29W and NHdel, although the Ca2+ sensitivity of NHdel in this system is markedly reduced. We conclude that both mutations, NHdel and F29W, are functionally deleterious, possibly affecting interactions of the N domain with troponin I and/or T.
Resumo:
Eukaryotic translation initiation factor 5A (eIF5A) is a protein that is highly conserved and essential for cell viability. This factor is the only protein known to contain the unique and essential amino acid residue hypusine. This work focused on the structural and functional characterization of Saccharomyces cerevisiae eIF5A. The tertiary structure of yeast eIF5A was modeled based on the structure of its Leishmania mexicana homologue and this model was used to predict the structural localization of new site-directed and randomly generated mutations. Most of the 40 new mutants exhibited phenotypes that resulted from eIF-5A protein-folding defects. Our data provided evidence that the C-terminal alpha-helix present in yeast eIF5A is an essential structural element, whereas the eIF5A N-terminal 10 amino acid extension not present in archaeal eIF5A homologs, is not. Moreover, the mutants containing substitutions at or in the vicinity of the hypusine modification site displayed nonviable or temperature-sensitive phenotypes and were defective in hypusine modification. Interestingly, two of the temperature-sensitive strains produced stable mutant eIF5A proteins - eIF5A(K56A) and eIF5A(Q22H,L93F)- and showed defects in protein synthesis at the restrictive temperature. Our data revealed important structural features of eIF5A that are required for its vital role in cell viability and underscored an essential function of eIF5A in the translation step of gene expression.
Resumo:
NAPc2, an anticoagulant protein from the hematophagous nematode Ancylostoma caninum evaluated in phase-II/IIa clinical trials, inhibits the extrinsic blood coagulation pathway by a two step mechanism, initially interacting with the hitherto uncharacterized factor Xa exosite involved in macromolecular recognition and subsequently inhibiting factor VIIa (K-i = 8.4 pM) of the factor VIIa/tissue factor complex. NAPc2 is highly flexible, becoming partially ordered and undergoing significant structural changes in the C terminus upon binding to the factor Xa exosite. In the crystal structure of the ternary factor Xa/NAPc2/selectide complex, the binding interface consists of an intermolecular antiparallel beta-sheet formed by the segment of the polypeptide chain consisting of residues 74-80 of NAPc2 with the residues 86-93 of factor Xa that is additional maintained by contacts between the short helical segment (residues 67-73) and a turn (residues 26-29) of NAPc2 with the short C-terminal helix of factor Xa (residues 233-243). This exosite is physiologically highly relevant for the recognition and inhibition of factor X/Xa by macromolecular substrates and provides a structural motif for the development of a new class of inhibitors for the treatment of deep vein thrombosis and angioplasty. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
BaP1 is a 22.7-kD P-I-type zinc-dependent metalloproteinase isolated from the venom of the snake Bothrops asper, a medically relevant species in Central America. This enzyme exerts multiple tissue-damaging activities, including hemorrhage, myonecrosis, dermonecrosis, blistering, and edema. BaP1 is a single chain of 202 amino acids that shows highest sequence identity with metalloproteinases isolated front the venoms of snakes of the subfamily Crotalinae. It has six Cys residues involved in three disulfide bridges (Cys 117-Cys 197, Cys 159-Cys 181, Cys 157-Cys 164). It has the consensus sequence H(142)E(143)XXH(146)XXGXXH(152), as well as the sequence C164I165M166, which characterize the metzincin superfamily of metalloproteinases. The active-site cleft separates a major subdomain (residues 1-152), comprising four a-helices and a five-stranded beta-sheet, from the minor subdomain, which is formed by a single a-helix and several loops. The catalytic zinc ion is coordinated by the N-epsilon2 nitrogen atoms of His 142, His 146, and His 152, in addition to a solvent water molecule, which in turn is bound to Glu 143. Several conserved residues contribute to the formation of the hydrophobic pocket, and Met 166 serves as a hydrophobic base for the active-site groups. Sequence and structural comparisons of hemorrhagic and nonhemorrhagic P-I metalloproteinases from snake venoms revealed differences in several regions. In particular, the loop comprising residues 153 to 176 has marked structural differences between metalloproteinases with very different hemorrhagic activities. Because this region lies in close proximity to the active-site microenvironment, it may influence the interaction of these enzymes with physiologically relevant substrates in the extracellular matrix.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work we present evidence that water molecules are actively involved on the control of binding affinity and binding site discrimination of a drug to natural DNA. In a previous study, the effect of water activity (a(w)) on the energetic parameters of actinomycin-D intercalation to natural DNA was determined using the osmotic stress method (39). This earlier study has shown evidence that water molecules act as an allosteric regulator of ligand binding to DNA via the effect of water activity on the long-range stability of the DNA secondary structure. In this work we have carried out DNA circularization experiments using the plasmid pUC18 in the absence of drugs and in the presence of different neutral solutes to evaluate the contribution of water activity to the energetics of DNA helix unwinding. The contribution of water to these independent reactions were made explicit by the description of how the changes in the free energy of ligand binding to DNA and in the free energy associated with DNA helix torsional deformation are linked to a(w) via changes in structural hydration. Taken together, the results of these studies reveal an extensive linkage between ligand binding affinity and site binding discrimination, and long range helix conformational changes and DNA hydration, This is strong evidence that water molecules work as a classical allosteric regulator of ligand binding to the DNA via its contribution to the stability of the double helix secondary structure, suggesting a possible mechanism by which the biochemical machinery of DNA processing takes advantage of the low activity of water into the cellular milieu.
Resumo:
Both human and bovine prothrombin fragment 2 (the second kringle) have been cocrystallized separately with human PPACK (D-Phe-Pro-Arg)-thrombin, and the structures of these noncovalent complexes have been determined and refined (R = 0.155 and 0.157, respectively) at 3.3-Å resolution using X-ray crystallographic methods. The kringles interact with thrombin at a site that has previously been proposed to be the heparin binding region. The latter is a highly electropositive surface near the C-terminal helix of thrombin abundant in arginine and lysine residues. These form salt bridges with acidic side chains of kringle 2. Somewhat unexpectedly, the negative groups of the kringle correspond to an enlarged anionic center of the lysine binding site of lysine binding kringles such as plasminogens K1 and K4 and TPA K2. The anionic motif is DGDEE in prothrombin kringle 2. The corresponding cationic center of the lysine binding site region has an unfavorable Arg70Asp substitution, but Lys35 is conserved. However, the folding of fragment 2 is different from that of prothrombin kringle 1 and other kringles: the second outer loop possesses a distorted two-turn helix, and the hairpin β-turn of the second inner loop pivots at Val64 and Asp70 by 60°. Lys35 is located on a turn of the helix, which causes it to project into solvent space in the fragment 2-thrombin complex, thereby devastating any vestige of the cationic center of the lysine binding site. Since fragment 2 has not been reported to bind lysine, it most likely has a different inherent folding conformation for the second outer loop, as has also been observed to be the case with TPA K2 and the urokinase kringle. The movement of the Val64-Asp70 β-turn is most likely a conformational change accompanying complexation, which reveals a new heretofore unsuspected flexibility in kringles. The fragment 2-thrombin complex is only the second cassette module-catalytic domain structure to be determined for a multidomain blood protein and only the third domain-domain interaction to be described among such proteins, the others being factor Xa without a Gla domain and Ca2+ prothrombin fragment 1 with a Gla domain and a kringle. © 1993 American Chemical Society.
Resumo:
Uncoupling proteins (UCPs) are specialized mitochondrial transporter proteins that uncouple respiration from ATP synthesis. In this study, cDNA encoding maize uncoupling protein (ZmPUMP) was expressed in Escherichia coli and recombinant ZmPUMP reconstituted in liposomes. ZmPUMP activity was associated with a linoleic acid (LA)-mediated H+ efflux with Km of 56.36 ± 0.27 μM and Vmax of 66.9 μmol H+ min-1 (mg prot)-1. LA-mediated H+ fluxes were sensitive to ATP inhibition with Ki of 2.61 ± 0.36 mM (at pH 7.2), a value similar to those for dicot UCPs. ZmPUMP was also used to investigate the importance of a histidine pair present in the second matrix loop of mammalian UCP1 and absent in plant UCPs. ZmPUMP with introduced His pair (Lys155His and Ala157His) displayed a 1.55-fold increase in LA-affinity while its activity remained unchanged. Our data indicate conserved properties of plant UCPs and suggest an enhancing but not essential role of the histidine pair in proton transport mechanism. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Background: Acute respiratory infections (ARI) are the leading cause of infant mortality in the world, and human respiratory syncytial virus (HRSV) is one of the main agents of ARI. One of the key targets of the adaptive host immune response is the RSV G-protein, which is responsible for attachment to the host cell. There is evidence that compounds such as flavonoids can inhibit viral infection in vitro. With this in mind, the main purpose of this study was to determine, using computational tools, the potential sites for interactions between G-protein and flavonoids. Results: Our study allowed the recognition of an hRSV G-protein model, as well as a model of the interaction with flavonoids. These models were composed, mainly, of -helix and random coil proteins. The docking process showed that molecular interactions are likely to occur. The flavonoid kaempferol-3-O-α-L-arabinopyranosil-(2 → 1)-α-L-apiofuranoside-7-O-α-L-rhamnopyranoside was selected as a candidate inhibitor. The main forces of the interaction were hydrophobic, hydrogen and electrostatic. Conclusions: The model of G-protein is consistent with literature expectations, since it was mostly composed of random coils (highly glycosylated sites) and -helices (lipid regions), which are common in transmembrane proteins. The docking analysis showed that flavonoids interact with G-protein in an important ectodomain region, addressing experimental studies to these sites. The determination of the G-protein structure is of great importance to elucidate the mechanism of viral infectivity, and the results obtained in this study will allow us to propose mechanisms of cellular recognition and to coordinate further experimental studies in order to discover effective inhibitors of attachment proteins.
Resumo:
The different kind of appliances for the treatment of posterior crossbite make that the orthodontist assess some criterions for their selection and success for the treatment. The aim of this paper was to compare two methods of treatment of the posterior crossbite by two case reports treated with Quad-helix and removable plate. Concluding that the Quad-helix is the appliance of first choice in relation of the removable plate for the short time of active treatment, the less visits and chair time, the fewer cost of treatment and the smaller cooperation of the patient.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A exploração da atividade biológica de compostos secundários presentes nas tinturas ou em óleos essenciais de plantas podem representar, ao lado da indução de resistência, mais uma forma potencial de controle de doenças em plantas cultivadas. O presente trabalho objetivou avaliar o potencial de tinturas de Lippia alba, Lippia sidoides, Mikania glomerata, Equisetum sp. e Hedera helix e óleos essenciais de Rosmarinus officinalis e Cinnamomum zeylanicum nas atividades in vitro, in vivo e na produção de proteínas na indução de resistência, em plantas de feijão vagem cultivar Bragança. Os resultados obtidos demonstraram que as tinturas de L. alba e L. sidoides e os óleos essenciais (R. officinalis e C. zeylanicum) apresentaram atividade in vitro aos isolados de Xanthomonas axonopodis pv. phaseoli. Todas as tinturas ensaiadas apresentaram menores valores do progresso da doença (AACPD), em relação à testemunha, merecendo destaque a tintura de L. alba, que estavam correlacionadas com os maiores teores de polifenoloxidase, peroxidase e proteínas solúveis totais, evidenciando uma possível indução de resistência. Os óleos essenciais não apresentaram diferença na AACPD e nem na indução de proteínas.