4 resultados para ground mass

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stern anatomy and the development of intraxylary phloem were investigated in six to eight years old Coccinia indica L. (Cucurbitaceae). Secondary growth in the stems was achieved by the normal cambial activity. In the innermost part of the thicker stems, xylem parenchyma and pith cells dedifferentiated into meristematic cells at several points. In some of the wider rays, ray cells dedifferentiate and produce secondary xylem and phloem with different orientations and sometimes a complete bicollateral vascular bundle. The inner cambial segments of the bicollateral vascular bundle (of primary growth) maintained radial arrangement even in the mature stems but in most places the cambia were either inactive or showed very few cell divisions. Concomitant with the obliteration and collapse of inner phloem (of bicollateral vascular bundles), parenchyma cells encircling the phloem became meristematic forming a circular sheath of internal cambia. These internal cambia produce only intraxylary secondary phloem centripetally and do not produce any secondary xylem. In the stem, secondary xylem consisted mainly of axial parenchyma, small strands of thick-walled xylem derivatives, i.e. vessel elements and fibres embedded in parenchymatous ground mass, wide and tall rays along with exceptionally wide vessels characteristic of lianas. In thick stems, the axial parenchyma de-differentiated into meristem, which later re-differentiated into interxylary phloem. Fibre dimorphism and pseudo-vestured pits in the vessels are also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate long-term monitoring of total ozone is one of the most important requirements for identifying possible natural or anthropogenic changes in the composition of the stratosphere. For this purpose, the NDACC (Network for the Detection of Atmospheric Composition Change) UV-visible Working Group has made recommendations for improving and homogenizing the retrieval of total ozone columns from twilight zenith-sky visible spectrometers. These instruments, deployed all over the world in about 35 stations, allow measuring total ozone twice daily with limited sensitivity to stratospheric temperature and cloud cover. The NDACC recommendations address both the DOAS spectral parameters and the calculation of air mass factors (AMF) needed for the conversion of O-3 slant column densities into vertical column amounts. The most important improvement is the use of O-3 AMF look-up tables calculated using the TOMS V8 (TV8) O-3 profile climatology, that allows accounting for the dependence of the O-3 AMF on the seasonal and latitudinal variations of the O-3 vertical distribution. To investigate their impact on the retrieved ozone columns, the recommendations have been applied to measurements from the NDACC/SAOZ (Systeme d'Analyse par Observation Zenithale) network. The revised SAOZ ozone data from eight stations deployed at all latitudes have been compared to TOMS, GOMEGDP4, SCIAMACHY-TOSOMI, SCIAMACHY-OL3, OMI-TOMS, and OMI-DOAS satellite overpass observations, as well as to those of collocated Dobson and Brewer instruments at Observatoire de Haute Provence (44 degrees N, 5.5 degrees E) and Sodankyla (67 degrees N, 27 degrees E), respectively. A significantly better agreement is obtained between SAOZ and correlative reference ground-based measurements after applying the new O-3 AMFs. However, systematic seasonal differences between SAOZ and satellite instruments remain. These are shown to mainly originate from (i) a possible problem in the satellite retrieval algorithms in dealing with the temperature dependence of the ozone cross-sections in the UV and the solar zenith angle (SZA) dependence, (ii) zonal modulations and seasonal variations of tropospheric ozone columns not accounted for in the TV8 profile climatology, and (iii) uncertainty on the stratospheric ozone profiles at high latitude in the winter in the TV8 climatology. For those measurements mostly sensitive to stratospheric temperature like TOMS, OMI-TOMS, Dobson and Brewer, or to SZA like SCIAMACHY-TOSOMI, the application of temperature and SZA corrections results in the almost complete removal of the seasonal difference with SAOZ, improving significantly the consistency between all ground-based and satellite total ozone observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lower bound masses of the ground-state relativistic three-boson system in 1 + 1, 2 + 1 and 3 + 1 spacetime dimensions are obtained. We have considered a reduction of the ladder Bethe-Salpeter equation to the lightfront in a model with renormalized two-body contact interaction. The lower bounds are deduced with the constraint of reality of the two-boson subsystem mass. It is verified that, in some cases, the lower bound approaches the ground-state binding energy. The corresponding non-relativistic limits are also verified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SAOZ (Systeme d'Analyse par Observations Zenithales) is a ground-based UV-Visible zenith-sky spectrometer installed between 1988 and 1995 at a number of NDSC stations at various latitudes on the globe. The instrument is providing ozone and NO2 vertical columns at sunrise and sunset using the Differential Optical Absorption Spectroscopy (DOAS) technique in the visible spectral range. The ERS-2 GOME Ozone Monitoring Experiment (GOME) in 1995 was the first satellite mission to provide a global picture of atmospheric NO 2 with reasonable spatial and temporal resolution. It was then followed by SCanning ImAging spectroMeter for Atmospheric ChartographY (SCIAMACHY) onboard ENVISAT in 2002, and Ozone Monitoring Instrument (OMI) onboard EOS-AURA in 2004, with a similar capacity to monitor total NO 2. All these instruments are nadir viewing mapping spectrometers, applying the DOAS technique in the visible for deriving the NO2 total column. Here we present the results of NO2 long-term comparisons between GOME and SAOZ for the whole period of GOME operation since 1995 at all latitudes - tropics, mid-latitudes and polar regions - in both hemispheres. Comparisons are also shown with the most recently available SCIAMACHY and OMI data in 2004-2005. Overall, the daytime satellite measurements (around noon) are found consistent with sunrise ground-based data, with an average smaller difference at the tropics and mid-latitudes than in the polar areas in the summer. The agreement is even improved after correcting for the NO2 photochemical change between sunrise and the satellite overpass using a box model. However, some seasonal dependence of the difference between ground-based and satellite total NO2 still remains, related to the accuracy of photochemical simulations and the set of NO2 air mass factors used in the retrievals of both systems.