277 resultados para graphite paste electrode
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Iron nitroprusside Fe(II)NP was incorporated into a carbon paste electrode and the electrochemical studies were performed with cyclic voltammetry. The cyclic voltammogram of Fe(II)NP exhibits two redox couple with formal potential (E0')1 = 0.24 e (E0')2 = 0.85 V vs SCE attributed to Fe(II)/Fe(II) and Fe (II)(CN)5NO/Fe(III)(CN)5NO, respectively. The redox couple with (E0')2 = 0.85 V presents an electrocatalytic response for sulfhydryl compounds. The electrocatalytic oxidation of sulfhydryl compounds by the mediator has been used for the determination of L-cysteine and N-acetylcysteine. The modified graphite paste electrode gives a linear range from 9.2 x 10-4-2.0 x 10-2;; 9.6 x 10-4-1.4 x 10-2mol L-1 for the determination of L-cysteine and N-acetylcysteine, respectively, with detection limit of 1.9 x 10-4 mol L-1;; 1.5 x 10 -4 mol L-1 and relative standard desviations ± 5% and 1.5 x 10-3 mol L-1 ± 4% (n=3). The amperometric sensitivities are 0.024 and 0.027 μA/μmol L-1 for L-cysteine and N-acetylcysteine, respectively. The application of this electrode was tested and a commercial pharmaceutical product (Fluimucil) has been determined.
Resumo:
Copper Pentacyanonitrosylferrate (NCuNP) nanoparticles were prepared in formamide solvent. The material was characterized by Infrared (FTIR), X-Ray Diffraction (XRD) and Ultraviolet-Visible (UV-Vis) Spectroscopy. The Cyclic Voltammogram (CV) the modified graphite paste electrode with NCuNP exhibits two redox couples with (Eθ,)1 = 0.29 and (E θ,)2 = 0.86 V attribute at Cu(I)/Cu (II) and Fe(II)(CN)5NO/Fe(III)(CN) 5NO processes, respectively (KCl = 1.0 mol L-1; v = 20 mV s-1). The redox couple with (Eθ,)2 presents an electrocatalytic response for sulfite. The modified graphite paste electrode gives a linear response of 7.0 × 10-4 to 3.0 × 10-2 mol L-1 (r = 0.998), for sulfite determination with Detection Limit (DL) of 1.76 × 10-3 mol L-1 and an amperometric sensitivity of 3.38 mA/mol L-1 and relative standard desviations ± 3% (n=3). ©The Electrochemical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electroanalytical determination of isoprenaline in pharmaceutical preparations of a homemade carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) was studied by cyclic voltammetry. Several parameters were studied for the optimization of the sensor such as electrode composition, electrolytic solution, pH effect, potential scan rate and interferences in potential. The optimum conditions were found in an electrode composition (in mass) of 15% CuHCF, 60% graphite and 25% mineral oil in 0.5 mol l(-1) acetate buffer solution at pH 6.0. The analytical curve for isoprenaline was linear in the concentration range from 1.96 x 10(-4) to 1.07 x 10(-3) mol l(-1) with a detection limit of 8.0 x 10(-5) mol l(-1). The relative standard deviation was 1.2% for 1.96 x 10(-4) mol l(-1) isoprenaline solution (n=5). The procedure was successfully applied to the determination of isoprenaline in pharmaceutical preparations; the CuHCF modified carbon paste electrode gave comparable results to those results obtained using a UV spectrophotometric method. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni2+ determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni2+ preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni2+ adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG)2 complex, whose electrochemical reduction provides the analytical signal.All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10(-9) to 1.0 x 10(-6) mol L-1 with detection limit of 2.0 x 10(-9) mol L-1. Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 mu mol L-1 Ni2+ and the developed electrode was totally stable in ethanolic solutions. The contents of Ni2+ found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni2+ determination in commercial ethanol fuel samples without any sample pretreatment or dilution step. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A potentiometric sensor constructed from a mixture of 25% (m/m) spinel-type manganese oxide (lambda-MnO2), 50% (m/m) graphite powder and 25% (m/m) mineral oil is used for the determination of lithium ions in a flow injection analysis system. Experimental parameters, such as pH of the carrier solution, flow rate, injection sample volume, and selectivity for Li+ against other alkali and alkaline-earth ions and the response time of this sensor were investigated. The sensor response to lithium ions was linear in the concentration range 8.6 x 10(-5) - 1.0 x 10(-2) mol L-1 with a slope 78.9 +/- 0.3 mV dec(-1) over a wide pH range 7 - 10 (Tris buffer), without interference of other alkali and alkaline-earth metals. For a flow rate of 5.0 mL min(-1) and a injection sample volume of 408.6 muL, the relative standard deviation for repeated injections of a 5.0 x 10(-4) mol L-1 lithium ions was 0.3%.
Resumo:
Organo-clay complex of ligand-hexadecyltrimethylammonium with montmorillonite was made for the purpose of application as a preconcentration agent in a chemically modified carbon paste electrode for determination of mercury (II) in aqueous solution. It was found out that the adsorption of Hg(II) by organo-clay complex is independent of the pH of the solution. It was also found out that the adsorption of the remaining metals Cd(II), Ps(II), Cu(II), Zn(II), and Ni(II) was dependent on the changes in pH solutions and increased when it varies from 1 to 8. The resultant material was characterized by cyclic and differential pulse anodic voltammetry using a modified graphite paste electrode in different supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, possible interferences and other variables.
Resumo:
The electrochemical behavior of a carbon paste electrode modified (CPEM) with N,N′-ethylenebis(salicylideneiminato)oxovanadium(IV) complex ([(VO)-O-IV(Salen)]) was investigated as a new sensor for cysteine. Cyclic voltammetry at the modified electrode in 0.1 mol L-1 KCl Solution (pH 5.0) showed a single-electron reduction/oxidation of the Couple VO3+/VO2+. The CPEM with [VO(Salen)] presented good electrochemical stability in a wide pH range (4.0-10.0) and an ability to electrooxidate cysteine at 0.65 V versus SCE. These results demonstrate the viability of the use of this modified electrode as an amperometric sensor for cysteine determination. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5-dimercapto-1,3,4-thiadiazole (DTTPSG-CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range -0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L-1 KNO3; nu=20 mV s(-1)) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG-CPE. The anodic wave peak at 0.31 V is well-defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg (L)-(1) Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Solid paraffin-based carbon paste electrodes modified with 2-aminothiazole organofunctionalized silica have been applied to the anodic stripping determination of copper ions in ethanol fuel samples without any sample treatment. The proposed method comprised four steps: (1) copper ions preconcentration at open circuit potential directly in the ethanol fuel sample; (2) exchange of the solution and immediate cathodic reduction of the absorbate at controlled potential; (3) differential pulse anodic stripping voltammetry; (4) electrochemical surface regeneration by applying a positive potential in acid media. Factors affecting the preconcentration, reduction and stripping steps were investigated and the optimum conditions were employed to develop the analytical procedure. Using a preconcentration time of 20 min and reduction time of 120 s at -0.3 V versus Ag/AgCl(sat) a linear range from 7.5 x 10(-8) to 2.5 x 10(-6) mol L(-1) with detection limit of 3.1 x 10(-8) mol L(-1) was obtained. Interference studies have shown a decrease in the interference effect according to the sequence: Ni > Zn > Cd > Pb > Fe. However, the interference effects of these ions have not forbidden the application of the proposed method. Recovery values between 98.8 and 102.3% were obtained for synthetic samples spiked with known amounts of Cu(2+) and interfering metallic ions. The developed electrode was successfully applied to the determination of Cu(2+) in commercial ethanol fuel samples. The results were compared to those obtained by flame atomic absorption spectroscopy by using the F-test and t-test. Neither F-value nor t-value have exceeded the critical values at 95% confidence level, confirming that there are no significant differences between the results obtained by both methods. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)