36 resultados para granites
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite(U-Pb age 1406 Ma), Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga Sunsas/Aguapei orogeny. The six intra-plate rapakivi granite episodes in the southwestern part of the Amazonian craton form three broad periods of anorogenic magmatism that have age-correlative events composed of similar rocks and geologic environments in eastern Laurentia and Baltica, although the exact timing of magmatism appears slightly different. Recognition of lithologic and chronological correlations between various cratons provide important constraints to models explaining the interplay between rapakivi granite magmatism and deep crustal evolution of an early Mesoproterozoic supercontinent. They are, furthermore, important to plate tectonic models for the assembly, dispersal and reassembly of Amazonia, Laurentia and Baltica in the Mesoproterozoic and Neoproterozoic. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondonia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondonia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Barbara deposit (Rondonia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sri (+/-W, +/-Ta, +/-Nb), and base-metal suite (Zn-Cu-Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0-19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245-450 degreesC, and (2) aqueous solutions with low CO2, low to moderate salinity (0-14 wt.% NaCl eq.), which homogenize between 100 and 340 T. In the Santa Barbara deposit, the early inclusions are represented by (1) low-salinity (5-12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 T, and (2) low-salinity (0-3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320380 degreesC. Cassiterite, wolframite, columbite-tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0-6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100-260 degreesC) and characterizes the sulfide fluorite-sericite association in the Correas deposit. The late fluid in the Santa Barbara deposit has lower salinity (0-3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240-450 degreesC, and 1,0-2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (delta(18)O quartz from 9.9parts per thousand to 10.9parts per thousand, deltaDH(2)O from 4.13parts per thousand to 6.95parts per thousand) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 degreesC. In the Santa Barbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 degreesC, respectively), and that for the cassiterite-quartz-veins is 415 degreesC. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (delta(18)O(qtz-H2O)=5.5-6.1parts per thousand) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (delta(18)O(mica-H2O)=33-9.8parts per thousand) suggest mixing with meteoric water. Late muscovite veins (delta(18)O(qtz-H2O)=-6.4parts per thousand) and late quartz (delta(18)O(mica-H2O)=-3.8parts per thousand) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor coluChange in the redox conditions related to mixing-of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Bura do Itapira pua carbonatite is located in southern Brazil and belongs to the Cretaceous Ponta Grossa alkaline-carbonatitic province related to the opening of the South Atlantic. The carbonatite complex is emplaced in Proterozoic granites and is mainly composed of plutonic magnesio- to ferrocarbonatite, with smaller amounts of subvolcanic magnesiocarbonatite. Hydrothermal alteration of the carbonatite has led to the formation of quartz, apatite, fluorite, rue earth fluorocarbonates, barite and sulfides in variable proportions. Trace element data, delta(13)C and delta(18)O are presented here, with the aim of better understanding the geochemical nature of hydrothermal alteration related to rare earth elements (REE) mineralization. The non-overprinted plutonic carbonatite shows the lowest REE contents, and its primitive carbon and oxygen stable isotopic composition places it in the field of primary igneous carbonatites. Two types of hydrothermally overprinted plutonic carbonatites can be distinguished based on secondary minerals and geochemical composition. Type I contains mainly quartz, rare earth fluorocarbonates and apatite as hydrothermal secondary minerals, and has steep chondrite normalized REE patterns, with Sigma(REE+Y) of up to 3 wt.% (i.e., two orders of magnitude higher than in fresh plutonic samples). In contrast, the Type II overprint contains apatite, fluorite and barite as dominant hydrothermal minerals, and is characterized by heavy REE enrichment relative to the fresh samples, with flat chondrite normalized REE patterns. Carbon and oxygen stable isotope ratios of Types I and II are elevated (delta(18)O + 8 to + 12 parts per thousand; delta(13)C - 6 to - 2 parts per thousand) relative to the fresh samples. Hydrothermally overprinted carbonatites exposed to weathering show even higher delta(18)O values (delta(18)O 13 to 25 parts per thousand) but no additional REE enrichment. The subvolcanic carbonatite has anomalously high delta(13)C of up to + 1 parts per thousand, which suggests crustal contamination through interaction with carbonate-bearing metasediments. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Laboratory time-scale experiments were conducted on gravels from the Carnmenellis granite, Cornwall, England, with the purpose of evaluating the release of natural uranium isotopes to the water phase. The implications of these results for the production of enhanced U-234/U-238 activity ratios in Cornish groundwaters are discussed. It is suggested that the U-234/U-238 lab data can be used to interpret activity ratios from Cornwall, even when the observed inverse relationship between dissolved U and U-234/U-238 in leachates/etchates is taken into account. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The Pluriserial Ribeira Magmatic System-590 of the Late Precambrian Ribeira Fold Belt comprises seven groups of high-K rocks of crustal or mantle origin with ages ranging between 620 and 570 Ma. One of these groups is represented by transalkaline suites akin to appinitic lamprophyres. The suites assemble one or more of following lithologies: (+/- quartz) gabbros and monzogabbros, (+/- quartz) diorites and monzodiorites, (+/- quartz) monzonites and syenites in addition to rare granites. All these rocks occur together in the Piracaia pluton, State of São Paulo. The mineralogy of the Piracaia suite comprises variable amounts of plagioclase (An 60-10), alkali-feldspars (orthoclase, microcline, albite), ortho- (Fe-hypersthene) and clinopyroxenes (augite), amphiboles (hornblende and rare late Fe-hastingsite), abundant biotite, quartz, opaques, sphene, allanite and zircon. Several magmatic pulses constructed the pluton. The Piracaia magma bulk trend evolved initially along the silica-undersaturation plane with simultaneous fractionation of accessory, mafic and felsic minerals. These are segregated in feldspar-rich cumulates. In the late stage, the evolutionary trend followed two distinct paths: one along the or-ab thermal barrier with the crystallization of syenites; the second one along the thermal valley in the or-ab-qz subsystem, producing quartz-syenites and granites. The source of the Piracaia magma was a 'vein-plus-wall-rock-system '. Together the pulses reflect increasing and decreasing participation of peridotites and mica pyroxenites, respectively, in the magmatogenic process. The magmatic pulses were stored in magma chambers, several drained by deep faults or fractures, which were successively reactivated and recharged. Each new pulse underwent mixing with earlier residual magma, followed by fractionation. During ascent through the hot and thickened post-collisional crust, the magma pulses underwent minor compositional changes by crustal contamination. The concentration of valuable elements (Cu, Zn, Gd) in the Piracaia pluton occurred during two phases of the magmatic evolution. Cu and Zn were enriched in cumulates and Gd was concentrated in residual quartz-syenitic veins. Due to their homogeneous dark colour and texture, the monzodiorites are exploited both for polished dimension stones and supports for sensitive scientific instruments. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
On the basis of geologic, petrologic, and U-Pb geochronologic data the basement rocks in the east-central part of the Rondonia Tin Province (RTP, southwestern Amazonian craton) are grouped into five lithologic associations: (1) tonalitic gneiss (1.75 Ga); (2) enderbitic granulite (1.73 Ga); (3) paragneiss; (4) granitic and charnockitic augen gneisses (1.57-1.53 Ga); and (5) fine-grained granitic gneiss and charnockitic granulite (1.43-1.42 Ga). The first three are related to development of the Paleoproterozoic Rio Negro-Juruena Province and represent the oldest crust in the region. The tonalitic gneisses and enderbitic granulites show calc-alkaline affinities and Nd isotopic compositions (initial epsilon(Nd) = +0-1 to -1.5; T-DM of 2.2-2.1 Ga) that suggest a continental arc margin setting for the original magmas. The paragneisses yield T-DM values of 2.2-2.1 Ga suggesting that source material was primarily derived from the Ventuari-Tapajos and Rio Negro-Juruena crusts, but detrital zircon ages and an intrusive granitoid bracket deposition between 1.67 and 1.57 Ga. The granitic and charnockitic augen gneisses show predominantly A-type and within-plate granite affinities, but also some volcanic arc granite characteristics. The initial epsilon(Nd) values (+0.6 to +2.0) indicate mixing of magmas derived from depleted mantle and older crustal sources. These rocks are correlated to the 1.60-1.53 Ga Serra da Providencia intrusive suite that reflects inboard magmatism coeval with the Cachoeirinha orogen located to the southeast. The fine-grained granitic gneiss and charnockitic granulites represent the first record of widespread magmatism at 1.43-1.42 Ga in northern Rondonia. Their geochemical signatures and the slightly positive initial epsilon(Nd) values (+0.7 to +1.2) are very similar to those of the most evolved granites of the calc-alkaline Santa Helena batholith farther southeast. U-Pb monazite and Sm-Nd whole-rock-garnet ages demonstrate that a high-grade tectonometa-morphic episode occurred in this region at 1.33-1.30 Ga. This episode attained upper-amphibolite conditions and is interpreted as the peak of the Rondonian-San Ignacio orogeny. The U-Pb and Sm-Nd data presented here and data published on rapakivi granites elsewhere indicate that the east-central part of the RTP is a poly-orogenic region characterized by successive episodes of magmatism, metamorphism, and deformation between 1.75 and 0.97 Ga. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
During the Brasiliano-Pan-African Orogeny, West Gondwana formed by collisional processes around the Sao Francisco-Congo Craton. The Ribeira belt, in southeastern Brazil, resulted from northwestward collision (650-600 Ma), followed by large-scale northeast-southwest dextral strike-slip shear movements related to late-collisional escape tectonics (ca 600 Ma).In São Paulo State, three groups, also interpreted as terranes, are recognised in the Ribeira Belt, the Embu, Itapira and Sao Rogue Groups. The Embu and Itapira Groups are formed of sillimanite-gneisses, schists and migmatites intruded by Neoproterozoic calc-alkaline granitoids, all thrusted northwestward. The Sao Rogue Group is composed of metasediments and metavolcanics in greenschist-facies. Its deformation indicates a transpressional regime associated with tectonic escape. Sub-alkaline granites were emplaced in shallow levels during this regime. Microstructural studies along the Itu, Moreiras and Taxaquara Shear Zones demonstrate the coexistence of horizontal and Vertical displacement components during the transpressional regime. The vertical component is regarded as responsible for the lateral juxtaposition of different crustal levels. (C) 1999 Elsevier B.V. Limited. All rights reserved.
Resumo:
The Medio Coreau domain of NE Brazil is located along the northwest margin of Borborema Province, the western branch of a Brasiliano/Pan-African collisional belt that formed during the assembly of Western Gondwana. The early Paleoproterozoic basement of the Medio Coreau domain is composed of migmatitic gneisses and juvenile granulites, overlain by late Paleoproterozoic and Neoproterozoic rocks intruded by syn- to post-tectonic Brasiliano granitoids. According to integrated structural and geochronological data (U-Pb zircon and monazite ages), the Neoproterozoic tectonic evolution of the Medio Coreau is characterized by low-angle thrusting and transcurrent deformation. U-Pb geochronological data from plutons intruded during this compressional regime indicate the collisional evolution began at approximately 622 Ma and continued until about 591 Ma. The continuation of convergence until approximately 560 Ma resulted in the formation of NE-SW and E-W shear zones within the Borborema Province and adjoining West African provinces. The final stage of the ductile tectonism was characterized by uplift and high-angle fault generation between approximately 560 and 545 Ma. The last tectonic event was an extensional phase, resulting in the formation of the Jaibaras graben and intrusion of post-orogenic granites at around 532 Ma. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm Nd and U Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma. The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province. Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group. Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ~ 1.0 ± 0.1 Ga, based on U Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3-1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments. Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age. © 1995.
Resumo:
The Precambrian Rio Paraíba do Sul Shear Belt comprises a 200-km-wide anastomosing network of NE-SW trending ductile shear zones extending over 1000 km of the southeastern coast of Brazil. Granulitic, gneissic-migmatitic, and granitoid terrains as well as low- to medium-grade metavolcanosedimentary sequences are included within it. These rocks were affected by strong contractional, tangential tectonics, due to west-northwestward oblique convergence of continental blocks. Subsequent transpressional tectonics accomodated large dextral, orogen-parallel movements and shortening. The plutonic Socorro Complex is one of many deformed granites with a foliation subparallel to that of the shear belt and exposes crosscutting relationships between its tectonic, magmatic, and metamorphic structures. These relationships point to a continuous magmatic evolution related to regional thrusts and strike slip, ductile shear zones. The tectonic and magmatic structural features of the Serra do Lopo Granite provide a model of emplacement by sheeting along shear zones during coeval strike-slip and cross shortening of country rocks. Geochronological data indicate that the main igneous activity of Socorro Complex spanned at least 55 million years, from the late stage of the northwestward ductile thrusting (650 Ma), through right-lateral strike slip (595 Ma) deformation. The country rocks yield discordant age data, which reflect a strong imprint of the Transamazonian tectono-metamorphic event (1.9 to 2.0 Ma). We propose a model for the origin of calcalkaline granites of the Ribeira Belt by partial melting of the lower crust with small contributions of the lithospheric mantle during transpressional thickening of plate margins, which were bounded by deep shear zones. The transpressional regime also seems to have focused granite migration from deeper into higher crustal levels along these shear zones.
Resumo:
Chemical analyses for biotites and their host rocks from the Cabreúva (three facies) and Salto (five facies) intrusions from the multiple-centered rapakivi Itu Complex, State of São Paulo, Brazil, are presented and compared. The Cabreúva intrusion comprises different kinds of mainly even-grained biotite and hornblende-bearing syenogranites, monzogranites and quartz syenites and the Salto intrusion several types of mainly porphyritic biotite syenogranites, some of them hornblende-bearing. The biotites from the Salto intrusion (S-micas) show a more restricted composition than those from the Cabreúva intrusion (C-micas). This reflects the chemical variability of the two bodies which is smaller in the Salto intrusion and larger in the Cabreúva pluton. In the AlIV x Fet/(Fet+Mg) diagram the S- and C-micas show similar AlIV contents, around 2.2-2.3, but C-micas have higher Fet/(Fet+Mg) ratios (0.7-0.9) compared to those of S-micas (0.5-0.6). In the Mg:(Al+Fe+3+Ti):(Fe+2+Mn) diagram the S-micas are defined as Fe+2-biotites and the C-micas occupy the area between the Fe+2-biotites and the siderophyllite/lepidomelane fields, slightly overlapping the latter. In the Al2O3 × FeOt, MgO × FeOt, Al2O3 x MgO and Alt x Mg diagrams, the S-micas always lie on the calc-alkaline/alkaline boundary (or in the subalkaline field) whereas the C-micas systematically plot in the alkaline field, reflecting the higher alkalis content of the Cabreúva intrusion. In the Fet/(Fet+Mg) x SiO2 diagram, the S-micas lie on a smooth line whereas the C-micas from the different facies are separated by distinct chemical gaps reflecting the major or minor chemical overlapping of the facies from the Salto and Cabreúva intrusions.
Resumo:
This paper describes the chemical variability of the Late Precambrian Itu Rapakivi Province (IRP), State of São Paulo, SE Brazil, based on 187 selected analyses from the Itu, São Francisco, Sorocaba, Campina do Veado and Sguario/ Correa granites. The IRP has an almost uniform petrographic character conferred by the overall dominance of subalkaline biotite granites. Monzogranites (adamellites), granodiorites, quartz syenites, quartz monzonites are rare to very rare rock types and tonalites and quartz diorites are almost restricted to enclaves. Typical chemical features are the high FeO*/MgO ratio, a clustering of the K2O values between 4.5 and 6.0 wt.% and K2O/Na2O ratios which define the IRP as mildly potassic although more potassic rocks also occur. The overal Peacock Alkalinity Index is 54 defining the Province as alkali-calcic. In the Shand diagram the data cluster near the metaluminous/peraluminous boundary. Relationships between Nb, Rb and Y stress the within plate character of the IRP and the relationships between Rb, Ba and Sr reveal the importance of feldspar fractionation in magma evolution. The data also show an interbody and an intrabody chemical variability due to the variation in the composition of the crustal magma protoliths, as assigned by K/Rb relations. The presence of several magmatic cycles which built up the major intrusions reflects a magma ascent from collecting chambers successively drained and recharged, a feature in agreement with the clear link between the bodies and long lived, successively reactivated, transcurrent faults. Most of the chemical features of the IRP correspond to those of the classical Finnish rapakivi granites.
Resumo:
The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U-Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana. Ages of detrital zircons (by ID-TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean- Paleoproterozoic ages (3.4-3.3, 3.1-2.7, and 2.5-2.4Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3-1.9Ga, with a peak at ca. 2.15Ga) and to the ca. 1.75Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2Ga, with a peak at 1.3Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin. Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6-1.2Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt. Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt. Whilst continent-continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634-599Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595-560Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588Ma, as indicated by monazite age. The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545-500Ma in the Paraguay belt and ca. 500Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50-100 million years. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The Brazilian Granitic Province from southeastern Mato Grosso do Sul and Mato Grosso region, central western Brazil, can be divided into two major groups and/or magmatic events related to the evolution of the Paraguay Fold Belt. The southern portion crops out in Mato Grosso do Sul State and is constituted by the Taboco, Rio Negro, Coxim and Sonora massifs forming NE-SW oriented, elongated small intrusions. The north portion crops out in Mato Grosso State and is constituted by the São Vicente, Araguaiana and Lajinha batholiths. Lithogeochemical aspects of the northern granites point to Type-I granites ranging from K calc-alkaline to high-K, peraluminous to metaluminous in composition, generated in an environment of continental collision and/or post- collision decompression. The southern granites are Type-I, from K calc-alkaline to high-K, peraluminous to subordinate metalummous, in a syn-collision continental arc environment with the exception of some pre-collisional facies from the Rio Negro Massif. The southern granites have less SiO 2 and K 2O, and are less differentiated and evolved than granites from the northern region. The four southern granites can be grouped into two subordinate sets with the degree of differentiation increasing from South (Taboco and Rio Negro) to North (Coxim and Sonora). The granitic rocks are characterized by a magmatism generated by melting of material from the lower crust which suggests that in this province the formation from non-cogenetic magmas with diversified compositions and distinct degrees of fractioning reaching more steady consolidated environments at the end of the collisional event in the southeastern Amazonian Craton.